808 research outputs found

    Orbiting Rainbows: Optical Manipulation of Aerosols and the Beginnings of Future Space Construction

    Get PDF
    Our objective is to investigate the conditions to manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an ultra-lightweight surface with useful and adaptable electromagnetic characteristics, for instance, in the optical, RF, or microwave bands. Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. See Figure 1 for a scenario of application of this concept. The solution that we propose is to construct an optical system in space in which the nonlinear optical properties of a cloud of micron-sized particles are shaped into a specific surface by light pressure, allowing it to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Other potential advantages offered by the cloud properties as optical system involve possible combination of properties (combined transmit/receive), variable focal length, combined refractive and reflective lens designs, and hyper-spectral imaging. A cloud of highly reflective particles of micron-size acting coherently in a specific electromagnetic band, just like an aerosol in suspension in the atmosphere, would reflect the Sun's light much like a rainbow. The only difference with an atmospheric or industrial aerosol is the absence of the supporting fluid medium. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft clouds to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exoplanet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exoplanet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities

    The Cleo Rich Detector

    Full text link
    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel ``sawtooth''-shaped exit surface. Photons in the wavelength interval 135--165 nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation is demonstrated.Comment: 75 pages, 57 figures, (updated July 26, 2005 to reflect reviewers comments), to be published in NIM

    Magnetic Microtraps for Cavity QED, Bose-Einstein Condensates, and Atom Optics

    Get PDF
    The system comprised of an atom strongly coupled to photons, known as cavity quantum electrodynamics (QED), provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum-limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create a sufficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have recently integrated an optical fiber Fabry-Perot cavity with such a device. The microwires allow the on-chip collection and laser cooling of neutral atoms, and allow the magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Magnetically trapped intracavity atoms have been detected with this cavity QED system. A similar experiment employing microdisks and photonic bandgap cavities is nearing completion. With these more exotic cavities, a robust and scalable atom-cavity chip system will deeply probe the strong coupling regime of cavity QED with magnetically trapped atoms. Atom chips have found great success in producing and manipulating Bose-Einstein condensates and in creating novel atom optical elements. An on-chip BEC has been attained in a miniaturized system incorporating an atom chip designed for atom interferometry and for studies of Josephson effects of a BEC in a double-well potential. Using similar microfabrication techniques, we created and demonstrated a specular magnetic atom mirror formed from a standard computer hard drive. This device, in conjunction with micron-sized charged circular pads, can produce a 1-D ring trap which may prove useful for studying Tonks gases in a ring geometry and for creating devices such as a SQUID-like system for neutral atoms. This thesis describes the fabrication and employment of these atoms chips in experiments at both Caltech and Munich, the latter in collaboration with Professors Theodore Haensch and Jakob Reichel at the Max Planck Institute for Quantum Optics.</p

    Strongly Magnetized Tidal Disruption Event Disks via Stream Injection in GRMHD

    Full text link
    Magnetically arrested accretion disks (MADs) around a rapidly rotating black hole (BH) have been proposed as a model for jetted tidal disruption events (TDEs). However, the dynamics of strongly magnetized disks in a more realistic simulation which can mimic the chaotic dynamics during a TDE have previously been unexplored. Here we employ global GRMHD simulations of a pre-existing MAD disk interacting with an injected TDE stream with impact parameter βRt/Rp=47\beta\equiv R_t/R_p=4-7 to investigate how strongly magnetized TDEs differ from the standard MAD picture. We demonstrate for the first time that a MAD or semi-MAD state can be sustained and jets powered by the BH spin are produced in a TDE. We also demonstrate that the strength of the self-intersection shock depends on how dense the disk is relative to the stream, or the density contrast fρ=ρd/ρsf_\rho=\rho_d/\rho_s. The jet or funnel can become significantly tilted (by 103010-30^\circ) due to the self-intersection outflow when fρ0.1f_\rho \leq 0.1. In models with a powerful jet and fρ0.01f_\rho\leq 0.01, the tilted jet interacts with and ultimately tilts the disk by as much as 23 degrees from the incoming stream. We illustrate that as fρf_\rho increases, the tilt of the jet and disk is expected to realign with the BH spin once fρ0.1f_\rho \geq 0.1. We illustrate how the tilt can rapidly realign if fρf_\rho increases rapidly and apply this to TDEs which have shown X-ray evolution on timescales of days-weeks.Comment: 21 pages, 22 figures, videos available at https://www.youtube.com/playlist?list=PL6Na55ZD3RmoJl7Rjhn6gCeAE0HWYCI0
    corecore