38,204 research outputs found

    How single neuron properties shape chaotic dynamics and signal transmission in random neural networks

    Full text link
    While most models of randomly connected networks assume nodes with simple dynamics, nodes in realistic highly connected networks, such as neurons in the brain, exhibit intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of nodes (such as single neurons) and recurrent connections interact to shape the effective dynamics in large randomly connected networks. A novel dynamical mean-field theory for strongly connected networks of multi-dimensional rate units shows that the power spectrum of the network activity in the chaotic phase emerges from a nonlinear sharpening of the frequency response function of single units. For the case of two-dimensional rate units with strong adaptation, we find that the network exhibits a state of "resonant chaos", characterized by robust, narrow-band stochastic oscillations. The coherence of stochastic oscillations is maximal at the onset of chaos and their correlation time scales with the adaptation timescale of single units. Surprisingly, the resonance frequency can be predicted from the properties of isolated units, even in the presence of heterogeneity in the adaptation parameters. In the presence of these internally-generated chaotic fluctuations, the transmission of weak, low-frequency signals is strongly enhanced by adaptation, whereas signal transmission is not influenced by adaptation in the non-chaotic regime. Our theoretical framework can be applied to other mechanisms at the level of single nodes, such as synaptic filtering, refractoriness or spike synchronization. These results advance our understanding of the interaction between the dynamics of single units and recurrent connectivity, which is a fundamental step toward the description of biologically realistic network models in the brain, or, more generally, networks of other physical or man-made complex dynamical units

    Noise-induced volatility of collective dynamics

    Get PDF
    "Noise-induced volatility" refers to a phenomenon of increased level of fluctuations in the collective dynamics of bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical signature of this phenomenon is that --beyond the increase in the level of fluctuations-- the response of the system becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium systems and of strong selective responses of immune systems of complex biological organisms. Extensive numerical simulations are compared with a mean-field theory for different network topologies

    Stochastic resonance in electrical circuits—II: Nonconventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), in which a periodic signal in a nonlinear system can be amplified by added noise, is discussed. The application of circuit modeling techniques to the conventional form of SR, which occurs in static bistable potentials, was considered in a companion paper. Here, the investigation of nonconventional forms of SR in part using similar electronic techniques is described. In the small-signal limit, the results are well described in terms of linear response theory. Some other phenomena of topical interest, closely related to SR, are also treate

    Dynamical amplification of magnetoresistances and Hall currents up to the THz regime

    Full text link
    Spin-orbit-related effects offer a highly promising route for reading and writing information in magnetic units of future devices. These phenomena rely not only on the static magnetization orientation but also on its dynamics to achieve fast switchings that can reach the THz range. In this work, we consider Co/Pt and Fe/W bilayers to show that accounting for the phase difference between different processes is crucial to the correct description of the dynamical currents. By tuning each system towards its ferromagnetic resonance, we reveal that dynamical spin Hall angles can non-trivially change sign and be boosted by over 500%, reaching giant values. We demonstrate that charge and spin pumping mechanisms can greatly magnify or dwindle the currents flowing through the system, influencing all kinds of magnetoresistive and Hall effects, thus impacting also dc and second harmonic experimental measurements.Comment: 19 pages, 4 figures, Supplementary Informatio
    corecore