31 research outputs found

    Tameness in least fixed-point logic and McColm's conjecture

    Full text link
    We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we completely determine the valid entailments among them. In contrast to the context of first-order logic on arbitrary structures, the order property and independence property are equivalent in this setting. McColm conjectured that least fixed-point definability collapses to first-order definability exactly when proficiency fails. McColm's conjecture is known to be false in general. However, we show that McColm's conjecture is true for any family of finite structures whose limit theory is model-theoretically tame

    On the strictness of the quantifier structure hierarchy in first-order logic

    Full text link
    We study a natural hierarchy in first-order logic, namely the quantifier structure hierarchy, which gives a systematic classification of first-order formulas based on structural quantifier resource. We define a variant of Ehrenfeucht-Fraisse games that characterizes quantifier classes and use it to prove that this hierarchy is strict over finite structures, using strategy compositions. Moreover, we prove that this hierarchy is strict even over ordered finite structures, which is interesting in the context of descriptive complexity.Comment: 38 pages, 8 figure

    On the structure of random unlabelled acyclic graphs

    Get PDF
    AbstractOne can use Poisson approximation techniques to get results about the asymptotics of graphical properties on random unlabelled acyclic graphs i.e., on random unlabelled free (rootless) trees. We will use some “colored” partitions to get some rough descriptions of the structure of “most” unlabelled acyclic graphs. In particular, we will prove that for any fixed rooted tree T, almost every sufficiently large acyclic graph has a “subtree” isomorphic to T. We can use this result to get a zero-one law for Monadic Second Order queries on random unlabelled acyclic graphs

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length ≈5⋅10−6\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT

    Author Index

    Get PDF

    On Sharp Thresholds in Random Geometric Graphs

    Get PDF
    We give a characterization of vertex-monotone properties with sharp thresholds in a Poisson random geometric graph or hypergraph. As an application we show that a geometric model of random k-SAT exhibits a sharp threshold for satisfiability
    corecore