49,853 research outputs found

    Approximating Source Location and Star Survivable Network Problems

    Full text link
    In Source Location (SL) problems the goal is to select a mini-mum cost source set SVS \subseteq V such that the connectivity (or flow) ψ(S,v)\psi(S,v) from SS to any node vv is at least the demand dvd_v of vv. In many SL problems ψ(S,v)=dv\psi(S,v)=d_v if vSv \in S, namely, the demand of nodes selected to SS is completely satisfied. In a node-connectivity variant suggested recently by Fukunaga, every node vv gets a "bonus" pvdvp_v \leq d_v if it is selected to SS. Fukunaga showed that for undirected graphs one can achieve ratio O(klnk)O(k \ln k) for his variant, where k=maxvVdvk=\max_{v \in V}d_v is the maximum demand. We improve this by achieving ratio \min\{p^*\lnk,k\}\cdot O(\ln (k/q^*)) for a more general version with node capacities, where p=maxvVpvp^*=\max_{v \in V} p_v is the maximum bonus and q=minvVqvq^*=\min_{v \in V} q_v is the minimum capacity. In particular, for the most natural case p=1p^*=1 considered by Fukunaga, we improve the ratio from O(klnk)O(k \ln k) to O(ln2k)O(\ln^2k). We also get ratio O(k)O(k) for the edge-connectivity version, for which no ratio that depends on kk only was known before. To derive these results, we consider a particular case of the Survivable Network (SN) problem when all edges of positive cost form a star. We give ratio O(min{lnn,ln2k})O(\min\{\ln n,\ln^2 k\}) for this variant, improving over the best ratio known for the general case O(k3lnn)O(k^3 \ln n) of Chuzhoy and Khanna

    QoS Constrained Optimal Sink and Relay Placement in Planned Wireless Sensor Networks

    Full text link
    We are given a set of sensors at given locations, a set of potential locations for placing base stations (BSs, or sinks), and another set of potential locations for placing wireless relay nodes. There is a cost for placing a BS and a cost for placing a relay. The problem we consider is to select a set of BS locations, a set of relay locations, and an association of sensor nodes with the selected BS locations, so that number of hops in the path from each sensor to its BS is bounded by hmax, and among all such feasible networks, the cost of the selected network is the minimum. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard, and is hard to even approximate within a constant factor. For this problem, we propose a polynomial time approximation algorithm (SmartSelect) based on a relay placement algorithm proposed in our earlier work, along with a modification of the greedy algorithm for weighted set cover. We have analyzed the worst case approximation guarantee for this algorithm. We have also proposed a polynomial time heuristic to improve upon the solution provided by SmartSelect. Our numerical results demonstrate that the algorithms provide good quality solutions using very little computation time in various randomly generated network scenarios

    Visualizing Sensor Network Coverage with Location Uncertainty

    Full text link
    We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined
    corecore