10,637 research outputs found

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    Loom: Query-aware Partitioning of Online Graphs

    Full text link
    As with general graph processing systems, partitioning data over a cluster of machines improves the scalability of graph database management systems. However, these systems will incur additional network cost during the execution of a query workload, due to inter-partition traversals. Workload-agnostic partitioning algorithms typically minimise the likelihood of any edge crossing partition boundaries. However, these partitioners are sub-optimal with respect to many workloads, especially queries, which may require more frequent traversal of specific subsets of inter-partition edges. Furthermore, they largely unsuited to operating incrementally on dynamic, growing graphs. We present a new graph partitioning algorithm, Loom, that operates on a stream of graph updates and continuously allocates the new vertices and edges to partitions, taking into account a query workload of graph pattern expressions along with their relative frequencies. First we capture the most common patterns of edge traversals which occur when executing queries. We then compare sub-graphs, which present themselves incrementally in the graph update stream, against these common patterns. Finally we attempt to allocate each match to single partitions, reducing the number of inter-partition edges within frequently traversed sub-graphs and improving average query performance. Loom is extensively evaluated over several large test graphs with realistic query workloads and various orderings of the graph updates. We demonstrate that, given a workload, our prototype produces partitionings of significantly better quality than existing streaming graph partitioning algorithms Fennel and LDG

    Low-level Vision by Consensus in a Spatial Hierarchy of Regions

    Full text link
    We introduce a multi-scale framework for low-level vision, where the goal is estimating physical scene values from image data---such as depth from stereo image pairs. The framework uses a dense, overlapping set of image regions at multiple scales and a "local model," such as a slanted-plane model for stereo disparity, that is expected to be valid piecewise across the visual field. Estimation is cast as optimization over a dichotomous mixture of variables, simultaneously determining which regions are inliers with respect to the local model (binary variables) and the correct co-ordinates in the local model space for each inlying region (continuous variables). When the regions are organized into a multi-scale hierarchy, optimization can occur in an efficient and parallel architecture, where distributed computational units iteratively perform calculations and share information through sparse connections between parents and children. The framework performs well on a standard benchmark for binocular stereo, and it produces a distributional scene representation that is appropriate for combining with higher-level reasoning and other low-level cues.Comment: Accepted to CVPR 2015. Project page: http://www.ttic.edu/chakrabarti/consensus
    corecore