2,032 research outputs found

    Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull

    Full text link
    The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a chordless cycle of length at least five). By applying clique separator decomposition as well as modular decomposition, we obtain polynomial time solutions of MWIS for odd-hole- and dart-free graphs as well as for odd-hole- and bull-free graphs (dart and bull have five vertices, say a,b,c,d,ea,b,c,d,e, and dart has edges ab,ac,ad,bd,cd,deab,ac,ad,bd,cd,de, while bull has edges ab,bc,cd,be,ceab,bc,cd,be,ce). If the graphs are hole-free instead of odd-hole-free then stronger structural results and better time bounds are obtained

    Homogeneous sets, clique-separators, critical graphs, and optimal χ\chi-binding functions

    Full text link
    Given a set H\mathcal{H} of graphs, let fH ⁣:N>0N>0f_\mathcal{H}^\star\colon \mathbb{N}_{>0}\to \mathbb{N}_{>0} be the optimal χ\chi-binding function of the class of H\mathcal{H}-free graphs, that is, fH(ω)=max{χ(G):G is H-free, ω(G)=ω}.f_\mathcal{H}^\star(\omega)=\max\{\chi(G): G\text{ is } \mathcal{H}\text{-free, } \omega(G)=\omega\}. In this paper, we combine the two decomposition methods by homogeneous sets and clique-separators in order to determine optimal χ\chi-binding functions for subclasses of P5P_5-free graphs and of (C5,C7,)(C_5,C_7,\ldots)-free graphs. In particular, we prove the following for each ω1\omega\geq 1: (i)  f{P5,banner}(ω)=f3K1(ω)Θ(ω2/log(ω)),\ f_{\{P_5,banner\}}^\star(\omega)=f_{3K_1}^\star(\omega)\in \Theta(\omega^2/\log(\omega)), (ii) $\ f_{\{P_5,co-banner\}}^\star(\omega)=f^\star_{\{2K_2\}}(\omega)\in\mathcal{O}(\omega^2),(iii) (iii) \ f_{\{C_5,C_7,\ldots,banner\}}^\star(\omega)=f^\star_{\{C_5,3K_1\}}(\omega)\notin \mathcal{O}(\omega),and(iv) and (iv) \ f_{\{P_5,C_4\}}^\star(\omega)=\lceil(5\omega-1)/4\rceil.Wealsocharacterise,foreachofourconsideredgraphclasses,allgraphs We also characterise, for each of our considered graph classes, all graphs Gwith with \chi(G)>\chi(G-u)foreach for each u\in V(G).Fromthesestructuralresults,wecanproveReedsconjecturerelatingchromaticnumber,cliquenumber,andmaximumdegreeofagraphfor. From these structural results, we can prove Reed's conjecture -- relating chromatic number, clique number, and maximum degree of a graph -- for (P_5,banner)$-free graphs

    Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences

    Get PDF
    AbstractClique separator decomposition, introduced by Whitesides and Tarjan, is one of the most important graph decompositions. A hole is a chordless cycle with at least five vertices. A paraglider is a graph with five vertices a,b,c,d,e and edges ab,ac,bc,bd,cd,ae,de. We show that every (hole, paraglider)-free graph admits a clique separator decomposition into graphs of three very specific types. This yields efficient algorithms for various optimization problems in this class of graphs

    Colourings of P5P_5-free graphs

    Get PDF
    For a set of graphs H, we call a graph G H-free if G-S is non-isomorphic to H for each S⊆V(G) and each H∈H. Let f_H^* ∶N_(>0)↦N_(>0 )be the optimal χ-binding function of the class of H-free graphs, that is, f_H^* (ω)=max⁡{χ(G): ω(G)=ω,G is H-free} where χ(G),ω(G) denote the chromatic number and clique number of G, respectively. In this thesis, we mostly determine optimal χ-binding functions for subclasses of P_5-free graphs, where P_5 denotes the path on 5 vertices. For multiple subclasses we are able to determine them exactly and for others we prove the right order of magnitude. To achieve those results we prove structural results for the graph classes and determine colourings. We sometimes obtain those results by researching the prime graphs and combining the two decomposition methods by homogeneous sets and clique-separators. Additionally, we use the Strong Perfect Graph Theorem and analyse the neighbourhood of holes. For some of these subclasses we characterise all graphs G with χ(G)>χ(G-\{u\}), for each u∈V(G) and use those to determine the function
    corecore