7,589 research outputs found

    Design of an Elastic Actuation System for a Gait-Assistive Active Orthosis for Incomplete Spinal Cord Injured Subjects

    Get PDF
    A spinal cord injury severely reduces the quality of life of affected people. Following the injury, limitations of the ability to move may occur due to the disruption of the motor and sensory functions of the nervous system depending on the severity of the lesion. An active stance-control knee-ankle-foot orthosis was developed and tested in earlier works to aid incomplete SCI subjects by increasing their mobility and independence. This thesis aims at the incorporation of elastic actuation into the active orthosis to utilise advantages of the compliant system regarding efficiency and human-robot interaction as well as the reproduction of the phyisological compliance of the human joints. Therefore, a model-based procedure is adapted to the design of an elastic actuation system for a gait-assisitve active orthosis. A determination of the optimal structure and parameters is undertaken via optimisation of models representing compliant actuators with increasing level of detail. The minimisation of the energy calculated from the positive amount of power or from the absolute power of the actuator generating one human-like gait cycle yields an optimal series stiffness, which is similar to the physiological stiffness of the human knee during the stance phase. Including efficiency factors for components, especially the consideration of the electric model of an electric motor yields additional information. A human-like gait cycle contains high torque and low velocities in the stance phase and lower torque combined with high velocities during the swing. Hence, the efficiency of an electric motor with a gear unit is only high in one of the phases. This yields a conceptual design of a series elastic actuator with locking of the actuator position during the stance phase. The locked position combined with the series compliance allows a reproduction of the characteristics of the human gait cycle during the stance phase. Unlocking the actuator position for the swing phase enables the selection of an optimal gear ratio to maximise the recuperable energy. To evaluate the developed concept, a laboratory specimen based on an electric motor, a harmonic drive gearbox, a torsional series spring and an electromagnetic brake is designed and appropriate components are selected. A control strategy, based on impedance control, is investigated and extended with a finite state machine to activate the locking mechanism. The control scheme and the laboratory specimen are implemented at a test bench, modelling the foot and shank as a pendulum articulated at the knee. An identification of parameters yields high and nonlinear friction as a problem of the system, which reduces the energy efficiency of the system and requires appropriate compensation. A comparison between direct and elastic actuation shows similar results for both systems at the test bench, showing that the increased complexity due to the second degree of freedom and the elastic behaviour of the actuator is treated properly. The final proof of concept requires the implementation at the active orthosis to emulate uncertainties and variations occurring during the human gait

    An aerodynamic analysis of a novel small wind turbine based on impulse turbine principles

    Get PDF
    This document is the Accepted Manuscript of the following article: Pei Ying, Yong Kang Chen, and Yi Geng Xu, ‘An aerodynamic analysis of a novel small wind turbine based on impulse turbine principles’, Renewable Energy, Vol. 75: 37-43, March 2015, DOI: https://doi.org/10.1016/j.renene.2014.09.035, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/The paper presents both a numerical and an experimental approach to study the air flow characteristics of a novel small wind turbine and to predict its performance. The turbine model was generated based on impulse turbine principles in order to be employed in an omni-flow wind energy system in urban areas. The results have shown that the maximum flow velocity behind the stator can be increased by 20% because of a nozzle cascade from the stator geometry. It was also observed that a wind turbine with a 0.3 m rotor diameter achieved the maximum power coefficient of 0.17 at the tip speed ratio of 0.6 under the wind velocity of 8.2 m/s. It was also found that the power coefficient was linked to the hub-to-tip ratio and reached its maximum value when the hub-to-tip ratio was 0.45. It is evident that this new wind turbine has the potential for low working noise and good starting feature compared with a conventional horizontal axis wind turbine.Peer reviewedFinal Accepted Versio

    Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    Full text link
    Wind turbines operate in the atmospheric boundary layer, where they are exposed to the turbulent atmospheric flows. As the response time of wind turbine is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. Consequently, basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. We report on basic research results concerning the small-scale intermittent properties of atmospheric flows and their impact on the wind energy conversion process. The analysis of wind data shows strongly intermittent statistics of wind fluctuations. To achieve numerical modeling a data-driven superposition model is proposed. For the experimental reproduction and adjustment of intermittent flows a so-called active grid setup is presented. Its ability is shown to generate reproducible properties of atmospheric flows on the smaller scales of the laboratory conditions of a wind tunnel. As an application example the response dynamics of different anemometer types are tested. To achieve a proper understanding of the impact of intermittent turbulent inflow properties on wind turbines we present methods of numerical and stochastic modeling, and compare the results to measurement data. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201

    CFD code comparison for 2D airfoil flows

    Get PDF
    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case
    • …
    corecore