48,928 research outputs found

    Infinite horizon optimal control of forward-backward stochastic differential equations with delay

    Get PDF
    We consider a problem of optimal control of an infinite horizon system governed by forward-backward stochastic differential equations with delay. Sufficient and necessary maximum principles for optimal control under partial information in infinite horizon are derived. We illustrate our results by an application to a problem of optimal consumption with respect to recursive utility from a cash flow with delay

    A maximum principle for infinite horizon delay equations

    Get PDF
    We prove a maximum principle of optimal control of stochastic delay equations on infinite horizon. We establish first and second sufficient stochastic maximum principles as well as necessary conditions for that problem. We illustrate our results by an application to the optimal consumption rate from an economic quantity

    Maximum principle for a stochastic delayed system involving terminal state constraints

    Full text link
    We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.Comment: 16 page

    Stochastic Control of Memory Mean-Field Processes

    Full text link
    By a memory mean-field process we mean the solution X(⋅)X(\cdot) of a stochastic mean-field equation involving not just the current state X(t)X(t) and its law L(X(t))\mathcal{L}(X(t)) at time tt, but also the state values X(s)X(s) and its law L(X(s))\mathcal{L}(X(s)) at some previous times s<ts<t. Our purpose is to study stochastic control problems of memory mean-field processes. - We consider the space M\mathcal{M} of measures on R\mathbb{R} with the norm ∣∣⋅∣∣M|| \cdot||_{\mathcal{M}} introduced by Agram and {\O}ksendal in \cite{AO1}, and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. - We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of \emph{(time-) advanced backward stochastic differential equations}, one of them with values in the space of bounded linear functionals on path segment spaces. - As an application of our methods, we solve a memory mean-variance problem as well as a linear-quadratic problem of a memory process
    • …
    corecore