29,834 research outputs found

    Fuzzy model based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators

    Get PDF
    Introduction. A wind energy conversion system needs a maximum power point tracking algorithm. In the literature, several works have interested in the search for a maximum power point wind energy conversion system. Generally, their goals are to optimize the mechanical rotation or the generator torque and the direct current or the duty cycle switchers. The power output of a wind energy conversion system depends on the accuracy of the maximum power tracking controller, as wind speed changes constantly throughout the day. Maximum power point tracking systems that do not require mechanical sensors to measure the wind speed offer several advantages over systems using mechanical sensors. The novelty. The proposed work introduces an intelligent maximum power point tracking technique based on a fuzzy model and multivariable predictive controller to extract the maximum energy for a small-scale wind energy conversion system coupled to the electrical network. The suggested algorithm does not need the measurement of the wind velocity or the knowledge of turbine parameters. Purpose. Building an intelligent maximum power point tracking algorithm that does not use mechanical sensors to measure the wind speed and extracts the maximum possible power from the wind generator, and is simple and easy to implement. Methods. In this control approach, a fuzzy system is mainly utilized to generate the reference DC-current corresponding to the maximum power point based on the changes in the DC-power and the rectified DC-voltage. In contrast, the fuzzy model-based multivariable predictive regulator follows the resultant reference current with minimum steady-state error. The significant issues of the suggested maximum power point tracking method, such as the detailed design process and implementation of the two controllers, have been thoroughly investigated and presented. The considered maximum power point tracking approach has been applied to a wind system driving a 5 kW permanent magnet synchronous generator in variable speed mode through the simulation tests. Practical value. A practical implementation has been executed on a 5 kW test bench consisting of a dSPACEds1104 controller board, permanent magnet synchronous generator, and DC-motor drives to confirm the simulation results. Comparative experimental results under varying wind speed have confirmed the achievable significant performance enhancements on the maximum wind energy generation and overall system response by using the suggested control method compared with a traditional proportional integral maximum power point tracking controller.Вступ. Система перетворення енергії вітру потребує алгоритму відстеження точки максимальної потужності. У літературі є кілька робіт, присвячених пошуку системи перетворення енергії вітру із точкою максимальної потужності. Як правило, їх метою є оптимізація механічного обертання або моменту, що крутить, генератора і перемикачів постійного струму або робочого циклу. Вихідна потужність системи перетворення енергії вітру залежить від точності контролера стеження за максимальною потужністю, оскільки швидкість вітру постійно змінюється протягом дня. Системи стеження за точками з максимальною потужністю, яким не потрібні механічні датчики для вимірювання швидкості вітру, мають ряд переваг у порівнянні з системами, що використовують механічні датчики. Новизна. Пропонована робота представляє інтелектуальний метод відстеження точки максимальної потужності, заснований на нечіткій моделі та багатопараметричному прогнозуючому контролері, для отримання максимальної енергії для маломасштабної системи перетворення енергії вітру, підключеної до електричної мережі. Пропонований алгоритм не вимагає вимірювання швидкості вітру або знання параметрів турбіни. Мета. Побудова інтелектуального алгоритму відстеження точки максимальної потужності, який не використовує механічні датчики для вимірювання швидкості вітру та витягує максимально можливу потужність з вітрогенератора, а також простий та зручний у реалізації. Методи. У цьому підході до управління нечітка система в основному використовується для генерування еталонного постійного струму, що відповідає точці максимальної потужності, на основі змін потужності постійного струму та постійної випрямленої напруги. Навпаки, багатопараметричний прогнозуючий регулятор на основі нечіткої моделі слідує за результуючим еталонним струмом з мінімальною помилкою, що встановилася. Істотні проблеми запропонованого методу відстеження точки максимальної потужності, такі як процес детального проектування та реалізація двох контролерів, були ретельно досліджені та представлені. Розглянутий підхід до відстеження точки максимальної потужності був застосований до вітрової системи, що приводить у дію синхронний генератор з постійними магнітами потужністю 5 кВт у режимі змінної швидкості за допомогою моделювання. Практична цінність. Для підтвердження результатів моделювання було виконано практичну реалізацію на випробувальному стенді потужністю 5 кВт, що складається з плати контролера dSPACEds1104, синхронного генератора з постійними магнітами та електроприводів з двигунами постійного струму. Порівняльні експериментальні результати при різній швидкості вітру підтвердили значні поліпшення продуктивності з максимального вироблення енергії вітру і загального відгуку системи при використанні запропонованого методу управління в порівнянні з традиційним пропорційно-інтегральним контролером спостереження за точкою максимальної потужності

    Non-linear supertwisting speed control PMSG based Higher Order Sliding Mode Control

    Get PDF
    To harvest the maximum power from an offshore wind energy-conversion-system (ECS), a robust controller is required to run the ECS constantly at the maximum-power-point (MPP). The maximum power point tracking schemes are developed via PID (proportional integral derivative) control, a model based SMC (sliding mode control) and a model based STA (super-twisting algorithm) to achieve supreme power from a permanent-magnet-synchronous- generator (PMSG) based variable speed wind energy conversion system (VSWECS). A detailed comparative analysis is carried out among the three competitors in MATLAB Simulink environment for a random wind energy speed profile. Furthermore, the final simulated results are analyzed and compared with results from standard feedback linearization (FBL)

    Power management and control for solar-wind-diesel stand-alone hybrid energy systems

    Get PDF
    xiv, 88 leaves : ill. ; 29 cm.Includes abstract and appendix.Includes bibliographical references (leaves 81-86).A simulation based research on developing a power management and control system for stand-alone solar-wind-diesel hybrid energy systems is presented in this dissertation. The simulation model of stand-alone system is developed from mathematical models of solar photovoltaic system, wind turbines and diesel generators. A multi-variable control system is developed and implemented into the simulation models in order to achieve optimum performance. The model of solar photovoltaic energy conversion system is constructed with maximum power point tracking control to extract maximum power from the solar photovoltaic system. An improved control system is developed for wind energy conversion system to optimize the operation of wind turbine through speed regulation and maximum power point tracking control. In addition, a governor control system is developed for the diesel generation system. The frequency regulation system consist conventional phase locked loop system and a voltage regulator in order to regulate the load voltage. A power management strategy is introduced to share the generated power and to improve the power quality where priority is given to the wind energy conversion system. The power management algorithm controls the sharing of generated power and optimizes the hybrid operation. The complete model of stand-alone solar-wind-diesel hybrid energy system is simulated in Matlab®/Simulink® interface. Results obtained from the simulation are presented to validate the control algorithms developed in this work

    Novel technique for hill climbing search to reach maximum power point tracking

    Get PDF
    In this paper, a new technique has been proposed to solve the trade off common problem in hill climbing search algorithm (HCS) to reach maximum power point tracking (MPPT). The main aim of the new technique is to increase the power efficiency for the wind energy conversion system (WECS). The proposed technique has been combined the three-mode algorithm to be simpler. The novel algorithm is increasing the ability to reach the MPPT without delay. The novel algorithm shows fast tracking capability and enhanced stability under change wind speed conditions

    Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems

    Full text link
    [EN] This paper presents an improved maximum-power-point tracking algorithm for wind-energy-conversion-systems. The proposed method significantly reduces the turbine mechanical stress with regard to conventional techniques, so that both the maintenance needs and the medium time between failures are expected to be improved. To achieve these objectives, a sensorless speed control loop receives its reference signal from a modified Perturb&Observe algorithm, in which the typical steps on the reference speed have been substituted by a fixed and well-defined slope ramp signal. As a result, it is achieved a soft dynamic response of both the torque and the speed of the wind turbine, so that the whole system suffers from a lower mechanical stress than with conventional P&O techniques. The proposed method has been applied to a wind turbine based on a permanent magnet synchronous generator operating at variable speed, which is connected to the distribution grid by means of a back to back converter.González, L.; Figueres Amorós, E.; Garcerá, G.; Carranza, O. (2010). Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Applied Energy. 87(7):2304-2312. doi:10.1016/j.apenergy.2009.11.030S2304231287

    Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System

    Get PDF
    This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results

    Sliding Mode Extremum Seeking Control for Maximum Power Point Tracking in Wind System

    Get PDF
    This paper proposes a sliding mode extremum seeking control (SM-ESC) for maximum power point tracking (MPPT) in variable speed wind energy conversion system, which includes the permanent magnet synchronous generator (PMSG), the uncontrolled rectifier, boost converter, battery and the DC constant power load (CPL). The presented MPPT control method integrates the theory of sliding mode control and the extremum seeking control. It refrains from some disadvantages in traditional wind MPPT methods, such as detecting the gradient of output power vs. rotor speed, longer transient response, high frequency noise and larger oscillations of output power. The specific working principle and adaptive step size setting of the MPPT controller are also analyzed based on the SM-ESC algorithm. Numerical simulation results demonstrate accurate operation and robustness of the MPPT algorithm in each operating condition

    Towards green energy for smart cities: particle swarm optimization based MPPT approach

    Get PDF
    This paper proposes an improved one-power-point (OPP) maximum power point tracking (MPPT) algorithm for wind energy conversion system (WECS) to overcome the problems of the conventional OPP MPPT algorithm, namely, the difficulty in getting a precise value of the optimum coefficient, requiring pre-knowledge of system parameters, and non-uniqueness of the optimum curve. The solution is based on combining the particle swarm optimization (PSO) and optimum-relation-based (ORB) MPPT algorithms. The PSO MPPT algorithm is used to search for the optimum coefficient. Once the optimum coefficient is obtained, the proposed algorithm switches to the ORB MPPT mode of operation. The proposed algorithm neither requires knowledge of system parameters nor mechanical sensors. In addition, it improves the efficiency of the WECS. The proposed algorithm is studied for two different wind speed profiles, and its tracking performance is compared with conventional optimum torque control (OTC) and conventional ORB MPPT algorithms under identical conditions. The improved performance of the algorithm in terms of tracking efficiency is validated through simulation using MATLAB/Simulink. The simulation results confirm that the proposed algorithm has a better performance in terms of tracking efficiency and energy extracted. The tracking efficiency of the PSO-ORB MPPT algorithm could reach up to 99.4% with 1.9% more harvested electrical energy than the conventional OTC and ORB MPPT algorithms. Experiments have been carried out to demonstrate the validity of the proposed MPPT algorithm. The experimental results compare well with system simulation results, and the proposed algorithm performs well, as expected

    PERANCANGAN MAXIMUM POWER POINT TRACKING PADA PEMBANGKIT LISTRIK TENAGA BAYU

    Get PDF
    “PERANCANGAN MAXIMUM POWER POINT TRACKING PADA PEMBANGKIT LISTRIK TENAGA BAYU” (Yasmanto Julio Jarso 1752004 Teknik Listrik DIII) (Dosen Pembimbing 1 : Ir.Choirul Saleh , MT) (Dosen Pembimbing 2 : Bima Romadhon Parada Dian Palevi, ST., MT) ABSTRAK Angin merupakan salah satu sumber energy terbarukan yang dapat dimanfaatkan untuk mengatasi kelangkaan energy listrik dengan menggunakan turbin angin. Akan tetapi,karena kecepatan angin yang tidak sabil dan cendrung berubah-ubah sepanjang waktu mengakibatkan efisiensi daya yang dihasilkan turbin angin tergolong rendah. Untuk mendapatkan nilai daya optimum dari turbin angina tersebut digunakan maximum power point tracking (MPPT) dengan menggunakan BOOST CONVERTER .algoritma MPPT perturb / mengganggu and observe /Amati digunakan untuk mencari daya maximum dari pembangkit listrik tenaga bayu/angin untuk pengisian baterai menggunakan mikrontroller sebagai pusat kendali untuk menaikan tegangan keluaran wind turbin secara otomatis. Model yang di gunakan dalam penelitiaan adalah Variable Speed Wind Turbin (VSWT) dengan Permanent Magnet Synchronous Generator (PSMG) analisis perancangan konversi energy angin di lakukan dengan menggunakan MATLAB/simulik hasil simulasi menunjukan bahwa MPPT yang di usulkan menghasilkan daya keluaran yang lebih tinggi dari pada sistem MPPT. Efisiensi rat-rata yang dapat di capai oleh sistem yang di usulkan untuk daya maksimum ke batrei adalah 90,56%. Kata kunci : turbin angin, maximum power point tracking, mikrokontroller, boost converter, batterai “PERANCANGAN MAXIMUM POWER POINT TRACKING PADA PEMBANGKIT LISTRIK TENAGA BAYU” (Yasmanto Julio Jarso 1752004 Teknik Listrik DIII) (Dosen Pembimbing 1 : Ir.Choirul Saleh , MT) (Dosen Pembimbing 2 : Bima Romadhon Parada Dian Palevi, ST., MT) ABSTRACT Wind is one of the renewable energy sources that can be used to overcome the scarcity of electrical energy by using wind turbines. However, because the wind speed is unstable and tends to change over time, the resulting power efficiency of wind turbines is classified as low. To get the optimum power value from the wind turbine, maximum power point tracking (MPPT) is used by using BOOST CONVERTER. The MPPT perturb / disturb and observe / Observe algorithm is used to find the maximum power from the wind / wind power plant for charging the battery using a microntroller as the center. control to increase the output voltage of the wind turbine automatically. The model used in this research is Variable Speed Wind Turbine (VSWT) with Permanent Magnet Synchronous Generator (PSMG) wind energy conversion design analysis is done using MATLAB / simulik simulation results show that the proposed MPPT produces higher output power than MPPT system. The average efficiency that the proposed system can achieve for maximum power to battery is 90.56%. Keywords: wind turbine, maximum power point tracking, microcontroller, boost converter, batter

    L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    Get PDF
    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed wind energy conversion system (WECS). The proposed controller generates the optimal torque command for the vector controlled generator-side converter based on the wind speed estimation. The proposed MPPT control algorithm has a generic structure and can be used for different generator types. In order to verify the efficacy of the proposed L1 adaptive controller for the MPPT of the WECS, a full converter wind turbine with a squirrel cage induction generator is used to carry out case studies using MATLAB/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodelled dynamics and in the presence of parameter uncertainties and unknown disturbances
    corecore