649 research outputs found

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Non-atomic Games for Multi-User Systems

    Get PDF
    In this contribution, the performance of a multi-user system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). We consider the realistic case of frequency selective channels for uplink CDMA. This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the Matched filter, the MMSE filter and the optimum filter. The goal of this paper is to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.Comment: 17 pages, 4 figures, submitted to IEEE JSAC Special Issue on ``Game Theory in Communication Systems'
    corecore