1,611 research outputs found

    Embedded Rank Distance Codes for ISI channels

    Get PDF
    Designs for transmit alphabet constrained space-time codes naturally lead to questions about the design of rank distance codes. Recently, diversity embedded multi-level space-time codes for flat fading channels have been designed from sets of binary matrices with rank distance guarantees over the binary field by mapping them onto QAM and PSK constellations. In this paper we demonstrate that diversity embedded space-time codes for fading Inter-Symbol Interference (ISI) channels can be designed with provable rank distance guarantees. As a corollary we obtain an asymptotic characterization of the fixed transmit alphabet rate-diversity trade-off for multiple antenna fading ISI channels. The key idea is to construct and analyze properties of binary matrices with a particular structure induced by ISI channels.Comment: Submitted to IEEE Transactions on Information Theor

    Algebraic number theory and code design for Rayleigh fading channels

    Get PDF
    Algebraic number theory is having an increasing impact in code design for many different coding applications, such as single antenna fading channels and more recently, MIMO systems. Extended work has been done on single antenna fading channels, and algebraic lattice codes have been proven to be an effective tool. The general framework has been settled in the last ten years and many explicit code constructions based on algebraic number theory are now available. The aim of this work is to provide both an overview on algebraic lattice code designs for Rayleigh fading channels, as well as a tutorial introduction to algebraic number theory. The basic facts of this mathematical field will be illustrated by many examples and by the use of a computer algebra freeware in order to make it more accessible to a large audience

    On the probability of staying above a wall for the (2+1)-dimensional SOS model at low temperature

    Full text link
    We obtain sharp asymptotics for the probability that the (2+1)-dimensional discrete SOS interface at low temperature is positive in a large region. For a square region Λ\Lambda, both under the infinite volume measure and under the measure with zero boundary conditions around Λ\Lambda, this probability turns out to behave like exp(τβ(0)LlogL)\exp(-\tau_\beta(0) L \log L ), with τβ(0)\tau_\beta(0) the surface tension at zero tilt, also called step free energy, and LL the box side. This behavior is qualitatively different from the one found for continuous height massless gradient interface models.Comment: 21 pages, 6 figure

    The Largest Cluster in Subcritical Percolation

    Full text link
    The statistical behavior of the size (or mass) of the largest cluster in subcritical percolation on a finite lattice of size NN is investigated (below the upper critical dimension, presumably dc=6d_c=6). It is argued that as NN \to \infty the cumulative distribution function converges to the Fisher-Tippett (or Gumbel) distribution eeze^{-e^{-z}} in a certain weak sense (when suitably normalized). The mean grows like sξlogNs_\xi^* \log N, where sξ(p)s_\xi^*(p) is a ``crossover size''. The standard deviation is bounded near sξπ/6s_\xi^* \pi/\sqrt{6} with persistent fluctuations due to discreteness. These predictions are verified by Monte Carlo simulations on d=2d=2 square lattices of up to 30 million sites, which also reveal finite-size scaling. The results are explained in terms of a flow in the space of probability distributions as NN \to \infty. The subcritical segment of the physical manifold (0<p<pc0 < p < p_c) approaches a line of limit cycles where the flow is approximately described by a ``renormalization group'' from the classical theory of extreme order statistics.Comment: 16 pages, 5 figs, expanded version to appear in Phys Rev
    corecore