260 research outputs found

    A Note on the Art of Network Design Problems

    Get PDF
    In this study, we describe some Network Design Problems (NDPs) as well as the network flowbased improvement algorithm for neighbourhood search defined by cycles. The main part of the study is structured around the formulation of the expected duration of stay in the educational system as a NDP. The fundamental matrix of the absorbing Markov chain is employed in computing the expected duration of each flow in the system. We shall illustrate the new graphtheoretic formulation for the educational system using datasets from a university setting. The paper concludes with suggestions for future directions of research.Keywords: absorbing Markov chain; educational system; graph theory; network design

    Improved Cardinality Bounds for Rectangle Packing Representations

    Get PDF
    Axis-aligned rectangle packings can be characterized by the set of spatial relations that hold for pairs of rectangles (west, south, east, north). A representation of a packing consists of one satisfied spatial relation for each pair. We call a set of representations complete for n ∈ ℕ if it contains a representation of every packing of any n rectangles. Both in theory and practice, fastest known algorithms for a large class of rectangle packing problems enumerate a complete set R of representations. The running time of these algorithms is dominated by the (exponential) size of R. In this thesis, we improve the best known lower and upper bounds on the minimum cardinality of complete sets of representations. The new upper bound implies theoretically faster algorithms for many rectangle packing problems, for example in chip design, while the new lower bound imposes a limit on the running time that can be achieved by any algorithm following this approach. The proofs of both results are based on pattern-avoiding permutations. Finally, we empirically compute the minimum cardinality of complete sets of representations for small n. Our computations directly suggest two conjectures, connecting well-known Baxter permutations with the set of permutations avoiding an apparently new pattern, which in turn seem to generate complete sets of representations of minimum cardinality

    Performance optimization of elastic systems using buffer resizing and buffer insertion

    Get PDF
    Buffer resizing and buffer insertion are two transformation techniques for the performance optimization of elastic systems. Different approaches for each technique have already been proposed in the literature. Both techniques increase the storage capacity and can potentially contribute to improve the throughput of the system. Each technique offers a different trade-off between area cost and latency. This paper presents a method that combines both techniques to achieve the maximum possible throughput while minimizing the cost of the implementation. The provided method is based on mixed integer linear programming. A set of experiments is designed to show the feasibility of the approach.Peer ReviewedPostprint (published version

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Layout design for bipolar integrated circuits

    Get PDF

    Timing Closure in Chip Design

    Get PDF
    Achieving timing closure is a major challenge to the physical design of a computer chip. Its task is to find a physical realization fulfilling the speed specifications. In this thesis, we propose new algorithms for the key tasks of performance optimization, namely repeater tree construction; circuit sizing; clock skew scheduling; threshold voltage optimization and plane assignment. Furthermore, a new program flow for timing closure is developed that integrates these algorithms with placement and clocktree construction. For repeater tree construction a new algorithm for computing topologies, which are later filled with repeaters, is presented. To this end, we propose a new delay model for topologies that not only accounts for the path lengths, as existing approaches do, but also for the number of bifurcations on a path, which introduce extra capacitance and thereby delay. In the extreme cases of pure power optimization and pure delay optimization the optimum topologies regarding our delay model are minimum Steiner trees and alphabetic code trees with the shortest possible path lengths. We presented a new, extremely fast algorithm that scales seamlessly between the two opposite objectives. For special cases, we prove the optimality of our algorithm. The efficiency and effectiveness in practice is demonstrated by comprehensive experimental results. The task of circuit sizing is to assign millions of small elementary logic circuits to elements from a discrete set of logically equivalent, predefined physical layouts such that power consumption is minimized and all signal paths are sufficiently fast. In this thesis we develop a fast heuristic approach for global circuit sizing, followed by a local search into a local optimum. Our algorithms use, in contrast to existing approaches, the available discrete layout choices and accurate delay models with slew propagation. The global approach iteratively assigns slew targets to all source pins of the chip and chooses a discrete layout of minimum size preserving the slew targets. In comprehensive experiments on real instances, we demonstrate that the worst path delay is within 7% of its lower bound on average after a few iterations. The subsequent local search reduces this gap to 2% on average. Combining global and local sizing we are able to size more than 5.7 million circuits within 3 hours. For the clock skew scheduling problem we develop the first algorithm with a strongly polynomial running time for the cycle time minimization in the presence of different cycle times and multi-cycle paths. In practice, an iterative local search method is much more efficient. We prove that this iterative method maximizes the worst slack, even when restricting the feasible schedule to certain time intervals. Furthermore, we enhance the iterative local approach to determine a lexicographically optimum slack distribution. The clock skew scheduling problem is then generalized to allow for simultaneous data path optimization. In fact, this is a time-cost tradeoff problem. We developed the first combinatorial algorithm for computing time-cost tradeoff curves in graphs that may contain cycles. Starting from the lowest-cost solution, the algorithm iteratively computes a descent direction by a minimum cost flow computation. The maximum feasible step length is then determined by a minimum ratio cycle computation. This approach can be used in chip design for several optimization tasks, e.g. threshold voltage optimization or plane assignment. Finally, the optimization routines are combined into a timing closure flow. Here, the global placement is alternated with global performance optimization. Netweights are used to penalize the length of critical nets during placement. After the global phase, the performance is improved further by applying more comprehensive optimization routines on the most critical paths. In the end, the clock schedule is optimized and clocktrees are inserted. Computational results of the design flow are obtained on real-world computer chips

    Global Constraint Catalog, 2nd Edition (revision a)

    Get PDF
    This report presents a catalogue of global constraints where each constraint is explicitly described in terms of graph properties and/or automata and/or first order logical formulae with arithmetic. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms
    • …
    corecore