37 research outputs found

    On the insertion time of random walk cuckoo hashing

    Full text link
    Cuckoo Hashing is a hashing scheme invented by Pagh and Rodler. It uses d≥2d\geq 2 distinct hash functions to insert items into the hash table. It has been an open question for some time as to the expected time for Random Walk Insertion to add items. We show that if the number of hash functions d=O(1)d=O(1) is sufficiently large, then the expected insertion time is O(1)O(1) per item.Comment: 9 page

    Tight Thresholds for Cuckoo Hashing via XORSAT

    Full text link
    We settle the question of tight thresholds for offline cuckoo hashing. The problem can be stated as follows: we have n keys to be hashed into m buckets each capable of holding a single key. Each key has k >= 3 (distinct) associated buckets chosen uniformly at random and independently of the choices of other keys. A hash table can be constructed successfully if each key can be placed into one of its buckets. We seek thresholds alpha_k such that, as n goes to infinity, if n/m <= alpha for some alpha < alpha_k then a hash table can be constructed successfully with high probability, and if n/m >= alpha for some alpha > alpha_k a hash table cannot be constructed successfully with high probability. Here we are considering the offline version of the problem, where all keys and hash values are given, so the problem is equivalent to previous models of multiple-choice hashing. We find the thresholds for all values of k > 2 by showing that they are in fact the same as the previously known thresholds for the random k-XORSAT problem. We then extend these results to the setting where keys can have differing number of choices, and provide evidence in the form of an algorithm for a conjecture extending this result to cuckoo hash tables that store multiple keys in a bucket.Comment: Revision 3 contains missing details of proofs, as appendix

    Fast Scalable Construction of (Minimal Perfect Hash) Functions

    Full text link
    Recent advances in random linear systems on finite fields have paved the way for the construction of constant-time data structures representing static functions and minimal perfect hash functions using less space with respect to existing techniques. The main obstruction for any practical application of these results is the cubic-time Gaussian elimination required to solve these linear systems: despite they can be made very small, the computation is still too slow to be feasible. In this paper we describe in detail a number of heuristics and programming techniques to speed up the resolution of these systems by several orders of magnitude, making the overall construction competitive with the standard and widely used MWHC technique, which is based on hypergraph peeling. In particular, we introduce broadword programming techniques for fast equation manipulation and a lazy Gaussian elimination algorithm. We also describe a number of technical improvements to the data structure which further reduce space usage and improve lookup speed. Our implementation of these techniques yields a minimal perfect hash function data structure occupying 2.24 bits per element, compared to 2.68 for MWHC-based ones, and a static function data structure which reduces the multiplicative overhead from 1.23 to 1.03

    On randomness in Hash functions

    Get PDF
    In the talk, we shall discuss quality measures for hash functions used in data structures and algorithms, and survey positive and negative results. (This talk is not about cryptographic hash functions.) For the analysis of algorithms involving hash functions, it is often convenient to assume the hash functions used behave fully randomly; in some cases there is no analysis known that avoids this assumption. In practice, one needs to get by with weaker hash functions that can be generated by randomized algorithms. A well-studied range of applications concern realizations of dynamic dictionaries (linear probing, chained hashing, dynamic perfect hashing, cuckoo hashing and its generalizations) or Bloom filters and their variants. A particularly successful and useful means of classification are Carter and Wegman's universal or k-wise independent classes, introduced in 1977. A natural and widely used approach to analyzing an algorithm involving hash functions is to show that it works if a sufficiently strong universal class of hash functions is used, and to substitute one of the known constructions of such classes. This invites research into the question of just how much independence in the hash functions is necessary for an algorithm to work. Some recent analyses that gave impossibility results constructed rather artificial classes that would not work; other results pointed out natural, widely used hash classes that would not work in a particular application. Only recently it was shown that under certain assumptions on some entropy present in the set of keys even 2-wise independent hash classes will lead to strong randomness properties in the hash values. The negative results show that these results may not be taken as justification for using weak hash classes indiscriminately, in particular for key sets with structure. When stronger independence properties are needed for a theoretical analysis, one may resort to classic constructions. Only in 2003 it was found out how full randomness can be simulated using only linear space overhead (which is optimal). The "split-and-share" approach can be used to justify the full randomness assumption in some situations in which full randomness is needed for the analysis to go through, like in many applications involving multiple hash functions (e.g., generalized versions of cuckoo hashing with multiple hash functions or larger bucket sizes, load balancing, Bloom filters and variants, or minimal perfect hash function constructions). For practice, efficiency considerations beyond constant factors are important. It is not hard to construct very efficient 2-wise independent classes. Using k-wise independent classes for constant k bigger than 3 has become feasible in practice only by new constructions involving tabulation. This goes together well with the quite new result that linear probing works with 5-independent hash functions. Recent developments suggest that the classification of hash function constructions by their degree of independence alone may not be adequate in some cases. Thus, one may want to analyze the behavior of specific hash classes in specific applications, circumventing the concept of k-wise independence. Several such results were recently achieved concerning hash functions that utilize tabulation. In particular if the analysis of the application involves using randomness properties in graphs and hypergraphs (generalized cuckoo hashing, also in the version with a "stash", or load balancing), a hash class combining k-wise independence with tabulation has turned out to be very powerful

    Load thresholds for cuckoo hashing with overlapping blocks

    Get PDF
    Dietzfelbinger and Weidling [DW07] proposed a natural variation of cuckoo hashing where each of cncn objects is assigned k=2k = 2 intervals of size ℓ\ell in a linear (or cyclic) hash table of size nn and both start points are chosen independently and uniformly at random. Each object must be placed into a table cell within its intervals, but each cell can only hold one object. Experiments suggested that this scheme outperforms the variant with blocks in which intervals are aligned at multiples of ℓ\ell. In particular, the load threshold is higher, i.e. the load cc that can be achieved with high probability. For instance, Lehman and Panigrahy [LP09] empirically observed the threshold for ℓ=2\ell = 2 to be around 96.5%96.5\% as compared to roughly 89.7%89.7\% using blocks. They managed to pin down the asymptotics of the thresholds for large ℓ\ell, but the precise values resisted rigorous analysis. We establish a method to determine these load thresholds for all ℓ≥2\ell \geq 2, and, in fact, for general k≥2k \geq 2. For instance, for k=ℓ=2k = \ell = 2 we get ≈96.4995%\approx 96.4995\%. The key tool we employ is an insightful and general theorem due to Leconte, Lelarge, and Massouli\'e [LLM13], which adapts methods from statistical physics to the world of hypergraph orientability. In effect, the orientability thresholds for our graph families are determined by belief propagation equations for certain graph limits. As a side note we provide experimental evidence suggesting that placements can be constructed in linear time with loads close to the threshold using an adapted version of an algorithm by Khosla [Kho13]
    corecore