654 research outputs found

    A Novel Robust Mel-Energy Based Voice Activity Detector for Nonstationary Noise and Its Application for Speech Waveform Compression

    Get PDF
    The voice activity detection (VAD) is crucial in all kinds of speech applications. However, almost all existing VAD algorithms suffer from the nonstationarity of both speech and noise. To combat this difficulty, we propose a new voice activity detector, which is based on the Mel-energy features and an adaptive threshold related to the signal-to-noise ratio (SNR) estimates. In this thesis, we first justify the robustness of the Bayes classifier using the Mel-energy features over that using the Fourier spectral features in various noise environments. Then, we design an algorithm using the dynamic Mel-energy estimator and the adaptive threshold which depends on the SNR estimates. In addition, a realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. Numerous simulations are carried out to evaluate the performance of our proposed VAD method and the comparisons are made with a couple existing representative schemes, namely the VAD using the likelihood ratio test with Fourier spectral energy features and that based on the enhanced time-frequency parameters. Three types of noise, namely white noise (stationary), babble noise (nonstationary) and vehicular noise (nonstationary) were artificially added by the computer for our experiments. As a result, our proposed VAD algorithm significantly outperforms other existing methods as illustrated by the corresponding receiver operating curves (ROCs). Finally, we demonstrate one of the major applications, namely speech waveform compression, associated with our new robust VAD scheme and quantify the effectiveness in terms of compression efficiency

    Velocity Dealiased Spectral Estimators of Range Migrating Targets using a Single Low-PRF Wideband Waveform

    Get PDF
    Wideband radars are promising systems that may provide numerous advantages, like simultaneous detection of slow and fast moving targets, high range-velocity resolution classification, and electronic countermeasures. Unfortunately, classical processing algorithms are challenged by the range-migration phenomenon that occurs then for fast moving targets. We propose a new approach where the range migration is used rather as an asset to retrieve information about target velocitiesand, subsequently, to obtain a velocity dealiased mode. More specifically three new complex spectral estimators are devised in case of a single low-PRF (pulse repetition frequency) wideband waveform. The new estimation schemes enable one to decrease the level of sidelobes that arise at ambiguous velocities and, thus, to enhance the discrimination capability of the radar. Synthetic data and experimental data are used to assess the performance of the proposed estimators

    Speech Enhancement Based on Full-Sentence Correlation and Clean Speech Recognition

    Get PDF

    Likelihood-Maximizing-Based Multiband Spectral Subtraction for Robust Speech Recognition

    Get PDF
    Automatic speech recognition performance degrades significantly when speech is affected by environmental noise. Nowadays, the major challenge is to achieve good robustness in adverse noisy conditions so that automatic speech recognizers can be used in real situations. Spectral subtraction (SS) is a well-known and effective approach; it was originally designed for improving the quality of speech signal judged by human listeners. SS techniques usually improve the quality and intelligibility of speech signal while speech recognition systems need compensation techniques to reduce mismatch between noisy speech features and clean trained acoustic model. Nevertheless, correlation can be expected between speech quality improvement and the increase in recognition accuracy. This paper proposes a novel approach for solving this problem by considering SS and the speech recognizer not as two independent entities cascaded together, but rather as two interconnected components of a single system, sharing the common goal of improved speech recognition accuracy. This will incorporate important information of the statistical models of the recognition engine as a feedback for tuning SS parameters. By using this architecture, we overcome the drawbacks of previously proposed methods and achieve better recognition accuracy. Experimental evaluations show that the proposed method can achieve significant improvement of recognition rates across a wide range of signal to noise ratios

    Methods of Optimizing Speech Enhancement for Hearing Applications

    Get PDF
    Speech intelligibility in hearing applications suffers from background noise. One of the most effective solutions is to develop speech enhancement algorithms based on the biological traits of the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The time constant is one of the key attributes of the MOC reflex as it regulates the variation of suppression over time. Different time constants have been measured in nonhuman mammalian and human auditory systems. Physiological studies reported that the time constant of nonhuman mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the stimulation. A human based study suggests that time constant could vary when the bandwidth of the noise is changed. Previous works have developed MOC reflex models and successfully demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, they often used fixed time constants. The effect of the different time constants on speech perception remains unclear. The main objectives of the present study are (1) to study the effect of the MOC reflex time constant on speech perception in different noise conditions; (2) to develop a speech enhancement algorithm with dynamic time constant optimization to adapt to varying noise conditions for improving speech intelligibility. The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-noise perception. Conventional studies do not consider the relationship between the time constants and speech perception as it is difficult to measure the speech intelligibility changes due to varying time constants in human subjects. We use a model to investigate the relationship by incorporating Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the time constant parameter of the model and testing the speech recognition accuracy of the ASR. Different time constants derived from human data are evaluated in both speech-like and non-speech like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show that the long time constants (≥1000 ms) provide a greater improvement of speech recognition accuracy at SNR levels≤10 dB. Maximum accuracy improvement of 40% (compared to no MOC condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show recognition accuracy over 5% higher than the longer ones at SNR levels ≥15 dB. The second part of the thesis develops a novel speech enhancement algorithm based on the MOC reflex with a time constant that is dynamically optimized, according to a lookup table for varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. High computational complexity would increase processing delay that causes intelligibility degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as entropy based features have been shown to be more robust in the cases of low SNR and nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels (< 0 dB), with averaging processing time only about 30% of the noise power estimation based method. The proposed SNR estimation method is further improved by implementing a nonlinear filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically optimized against varying SNRs is developed. The model incudes simulated inner hair cell response to reduce the model complexity, and now includes the SNR estimation method. Previous MOC reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst our modified MOC reflex model has a time constant dynamically optimized according to the estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement algorithm is developed based on the modified MOC reflex model and implemented in an existing hearing aid system. The performance is evaluated by measuring the objective speech intelligibility metric of processed noisy speech. In different types of noise, the proposed algorithm increases intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based algorithm in the hearing aid

    Noise-Robust Voice Conversion

    Get PDF
    A persistent challenge in speech processing is the presence of noise that reduces the quality of speech signals. Whether natural speech is used as input or speech is the desirable output to be synthesized, noise degrades the performance of these systems and causes output speech to be unnatural. Speech enhancement deals with such a problem, typically seeking to improve the input speech or post-processes the (re)synthesized speech. An intriguing complement to post-processing speech signals is voice conversion, in which speech by one person (source speaker) is made to sound as if spoken by a different person (target speaker). Traditionally, the majority of speech enhancement and voice conversion methods rely on parametric modeling of speech. A promising complement to parametric models is an inventory-based approach, which is the focus of this work. In inventory-based speech systems, one records an inventory of clean speech signals as a reference. Noisy speech (in the case of enhancement) or target speech (in the case of conversion) can then be replaced by the best-matching clean speech in the inventory, which is found via a correlation search method. Such an approach has the potential to alleviate intelligibility and unnaturalness issues often encountered by parametric modeling speech processing systems. This work investigates and compares inventory-based speech enhancement methods with conventional ones. In addition, the inventory search method is applied to estimate source speaker characteristics for voice conversion in noisy environments. Two noisy-environment voice conversion systems were constructed for a comparative study: a direct voice conversion system and an inventory-based voice conversion system, both with limited noise filtering at the front end. Results from this work suggest that the inventory method offers encouraging improvements over the direct conversion method
    • …
    corecore