5,028 research outputs found

    Maximum likelihood estimation of a finite mixture of logistic regression models in a continuous data stream

    Get PDF
    In marketing we are often confronted with a continuous stream of responses to marketing messages. Such streaming data provide invaluable information regarding message effectiveness and segmentation. However, streaming data are hard to analyze using conventional methods: their high volume and the fact that they are continuously augmented means that it takes considerable time to analyze them. We propose a method for estimating a finite mixture of logistic regression models which can be used to cluster customers based on a continuous stream of responses. This method, which we coin oFMLR, allows segments to be identified in data streams or extremely large static datasets. Contrary to black box algorithms, oFMLR provides model estimates that are directly interpretable. We first introduce oFMLR, explaining in passing general topics such as online estimation and the EM algorithm, making this paper a high level overview of possible methods of dealing with large data streams in marketing practice. Next, we discuss model convergence, identifiability, and relations to alternative, Bayesian, methods; we also identify more general issues that arise from dealing with continuously augmented data sets. Finally, we introduce the oFMLR [R] package and evaluate the method by numerical simulation and by analyzing a large customer clickstream dataset.Comment: 1 figure. Working paper including [R] packag

    Flexible modelling in statistics: past, present and future

    Get PDF
    In times where more and more data become available and where the data exhibit rather complex structures (significant departure from symmetry, heavy or light tails), flexible modelling has become an essential task for statisticians as well as researchers and practitioners from domains such as economics, finance or environmental sciences. This is reflected by the wealth of existing proposals for flexible distributions; well-known examples are Azzalini's skew-normal, Tukey's gg-and-hh, mixture and two-piece distributions, to cite but these. My aim in the present paper is to provide an introduction to this research field, intended to be useful both for novices and professionals of the domain. After a description of the research stream itself, I will narrate the gripping history of flexible modelling, starring emblematic heroes from the past such as Edgeworth and Pearson, then depict three of the most used flexible families of distributions, and finally provide an outlook on future flexible modelling research by posing challenging open questions.Comment: 27 pages, 4 figure

    Bayesian Analysis of ODE's: solver optimal accuracy and Bayes factors

    Full text link
    In most relevant cases in the Bayesian analysis of ODE inverse problems, a numerical solver needs to be used. Therefore, we cannot work with the exact theoretical posterior distribution but only with an approximate posterior deriving from the error in the numerical solver. To compare a numerical and the theoretical posterior distributions we propose to use Bayes Factors (BF), considering both of them as models for the data at hand. We prove that the theoretical vs a numerical posterior BF tends to 1, in the same order (of the step size used) as the numerical forward map solver does. For higher order solvers (eg. Runge-Kutta) the Bayes Factor is already nearly 1 for step sizes that would take far less computational effort. Considerable CPU time may be saved by using coarser solvers that nevertheless produce practically error free posteriors. Two examples are presented where nearly 90% CPU time is saved while all inference results are identical to using a solver with a much finer time step.Comment: 28 pages, 6 figure

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page
    • …
    corecore