183 research outputs found

    Performance Analysis Of A Cellular System Using C-Ofdm Techniques

    Get PDF
    The basic idea of COFDM is to split the modulation samples of incoming data stream onto a large number of carriers instead of modulating a unique carrier. Therefore, COFDM is an effective technique for combating multi-path fading and for highbit- rate transmission over wireless channel. In a single carrier system a frequency Selective fading can cause the entire transmission link to fail, but in an COFDM multi carrier system, only a small percentage of the sub-carriers will be corrupted. Frequency and time interleaving in conjunction with forward error correction coding can then be used to correct for erroneous subcarriers. The background information with the aim to provide an intuitive explanation of our research motivation. C-OFDM is the modulation scheme of choice , as enshrined in International standard for all forms of digital broadcasting both audio and video and including satellite, terrestrial, and cable. In the existing standard the “coding” referred to consists of an inner convolutional code concatenated with an outer R-S code; here in this thesis, we replace the inner code with the coding like space time trellis code for analysi

    Trellis code-aided high-rate differential space-time block code and enhanced uncoded space-time labeling diversity.

    Get PDF
    Master of Science in Engineering. University of KwaZulu-Natal, Durban, 2017.In this dissertation, a trellis code-aided bandwidth efficiency improvement technique for space-time block coded wireless communication systems is investigated. The application of the trellis code-aided bandwidth efficiency improvement technique to differential space-time block codes (DSTBC) results in a high-rate system called trellis code-aided DSTBC (TC-DSTBC). Such a system has not been investigated in open literature to date. Hence, in this dissertation, the mathematical models and design methodology for TC-DSTBC are presented. The two transmit antenna TC-DSTBC system transmits data by using a transmission matrix similar to the conventional DSTBC. The fundamental idea of TC-DSTBC is to use a dynamic mapping rule rather than a fixed one to map additional bits onto the expanded space-time block code (STBC) prior to differential encoding, hence, the additional bits-to-STBC mapping technique, which incorporates trellis coding is proposed for square M-ary quadrature amplitude modulation (M-QAM) in order to enhance the bandwidth efficiency without sacrificing the error performance of the conventional DSTBC. The comparison of bandwidth efficiency between TC-DSTBC and the conventional DSTBC show that TC-DSTBC achieves a minimum of 12.5% and 8.3% increase in bandwidth efficiency for 16-QAM and 64-QAM, respectively. Furthermore, the Monte Carlo simulation results show that, at high signal-to-noise ratios (SNR), the four receive antenna TC- DSTBC retains the bit error rate (BER) performance of the conventional DSTBC with the same number of receive antennas under the same independent and identically distributed (i.i.d.) Rayleigh frequency-flat fading channel and additive white noise (AWGN) conditions for various square M-QAM modulation orders and numbers of additional bits. Motivated by the bandwidth efficiency advantage of TC-DSTBC over the conventional DSTBC, the trellis code-aided bandwidth efficiency improvement technique is extended to the recently developed uncoded space-time labeling diversity (USTLD) system, where a new system referred to as enhanced uncoded space-time labeling diversity (E-USTLD) is proposed. In addition to this, a tight closed form lower-bound is derived to predict the average BER of the E-USTLD system over i.i.d. Rayleigh frequency-flat fading channels at high SNR. The Monte Carlo simulation results validate that the more bandwidth efficient four receive antenna E-USTLD system at the minimum retains the BER performance of the conventional four receive antenna USTLD system under the same fading channel and AWGN conditions for various square M-QAM modulation orders. The bandwidth efficiency improvement for TC-DSTBC and E-USTLD is achieved at the cost of a much higher computational complexity at the receiver due to use of the high-complexity Viterbi algorithm (VA)-based detector. Therefore, the low-complexity (LC) near-maximum-likelihood (near-ML) detection scheme proposed for the conventional USTLD is extended to the E-USTLD detector in order to reduce the magnitude of increase in the computational complexity. The Monte Carlo simulation results show that E-USTLD with a VA-based detector that implements LC near-ML detection attains near optimal BER performance

    Exploiting diversity in wireless channels with bit-interleaved coded modulation and iterative decoding (BICM-ID)

    Get PDF
    This dissertation studies a state-of-the-art bandwidth-efficient coded modulation technique, known as bit interleaved coded modulation with iterative decoding (BICM-ID), together with various diversity techniques to dramatically improve the performance of digital communication systems over wireless channels. For BICM-ID over a single-antenna frequency non-selective fading channel, the problem of mapping over multiple symbols, i.e., multi-dimensional (multi-D) mapping, with 8-PSK constellation is investigated. An explicit algorithm to construct a good multi-D mapping of 8-PSK to improve the asymptotic performance of BICM-ID systems is introduced. By comparing the performance of the proposed mapping with an unachievable lower bound, it is conjectured that the proposed mapping is the global optimal mapping. The superiority of the proposed mapping over the best conventional (1-dimensional complex) mapping and the multi-D mapping found previously by computer search is thoroughly demonstrated. In addition to the mapping issue in single-antenna BICM-ID systems, the use of signal space diversity (SSD), also known as linear constellation precoding (LCP), is considered in BICM-ID over frequency non-selective fading channels. The performance analysis of BICM-ID and complex N-dimensional signal space diversity is carried out to study its performance limitation, the choice of the rotation matrix and the design of a low-complexity receiver. Based on the design criterion obtained from a tight error bound, the optimality of the rotation matrix is established. It is shown that using the class of optimal rotation matrices, the performance of BICM-ID systems over a frequency non-selective Rayleigh fading channel approaches that of the BICM-ID systems over an additive white Gaussian noise (AWGN) channel when the dimension of the signal constellation increases. Furthermore, by exploiting the sigma mapping for any M-ary quadrature amplitude modulation (QAM) constellation, a very simple sub-optimal, yet effective iterative receiver structure suitable for signal constellations with large dimensions is proposed. Simulation results in various cases and conditions indicate that the proposed receiver can achieve the analytical performance bounds with low complexity. The application of BICM-ID with SSD is then extended to the case of cascaded Rayleigh fading, which is more suitable to model mobile-to-mobile communication channels. By deriving the error bound on the asymptotic performance, it is first illustrated that for a small modulation constellation, a cascaded Rayleigh fading causes a much more severe performance degradation than a conventional Rayleigh fading. However, BICM-ID employing SSD with a sufficiently large constellation can close the performance gap between the Rayleigh and cascaded Rayleigh fading channels, and their performance can closely approach that over an AWGN channel. In the next step, the use of SSD in BICM-ID over frequency selective Rayleigh fading channels employing a multi-carrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is studied. Under the assumption of correlated fading over subcarriers, a tight bound on the asymptotic error performance for the general case of applying SSD over all N subcarriers is derived and used to establish the best achievable asymptotic performance by SSD. It is then shown that precoding over subgroups of at least L subcarriers per group, where L is the number of channel taps, is sufficient to obtain this best asymptotic error performance, while significantly reducing the receiver complexity. The optimal joint subcarrier grouping and rotation matrix design is subsequently determined by solving the Vandermonde linear system. Illustrative examples show a good agreement between various analytical and simulation results. Further, by combining the ideas of multi-D mapping and subcarrier grouping, a novel power and bandwidth-efficient bit-interleaved coded modulation with OFDM and iterative decoding (BI-COFDM-ID) in which multi-D mapping is performed over a group of subcarriers for broadband transmission in a frequency selective fading environment is proposed. A tight bound on the asymptotic error performance is developed, which shows that subcarrier mapping and grouping have independent impacts on the overall error performance, and hence they can be independently optimized. Specifically, it is demonstrated that the optimal subcarrier mapping is similar to the optimal multi-D mapping for BICM-ID in frequency non-selective Rayleigh fading environment, whereas the optimal subcarrier grouping is the same with that of OFDM with SSD. Furthermore, analytical and simulation results show that the proposed system with the combined optimal subcarrier mapping and grouping can achieve the full channel diversity without using SSD and provide significant coding gains as compared to the previously studied BI-COFDM-ID with the same power, bandwidth and receiver complexity. Finally, the investigation is extended to the application of BICM-ID over a multiple-input multiple-output (MIMO) system equipped with multiple antennas at both the transmitter and the receiver to exploit both time and spatial diversities, where neither the transmitter nor the receiver knows the channel fading coefficients. The concentration is on the class of unitary constellation, due to its advantages in terms of both information-theoretic capacity and error probability. The tight error bound with respect to the asymptotic performance is also derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, by using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. Analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping

    Enhancement the Performance of OFDM based on Multiwavelets Using Turbo Codes

    Get PDF
    In wireless communication systems, the main challenge is to provide a high data rate and reliable transmission over a frequency selective fading channel. Orthogonal Frequency Division Multiplexing (OFDM) is a very attractive technique for high data rate transmission with better bandwidth efficiency. In this paper, the effectiveness of turbo codes is utilized to develop a new approach for an OFDM system based on a Discrete Multiwavelet Critical-Sampling Transform (OFDM-DMWCST). The use of turbo coding in an OFDM-DMWCST system is useful in providing the desired performance at higher data rates. Two types of turbo codes were used in this work, i.e., Parallel Concatenated Convolutional Codes (PCCCs) and Serial Concatenated Convolutional Codes (SCCCs). In both types, the decoding is performed by the iterative decoding algorithm based on the log-MAP (Maximum A Posteriori) algorithm. The simulationresults showed that, the turbo-coded OFDM-DMWCST system achieves large coding gain with lower Bit-Error-Rate (BER), therefore, offering a higher data rate under different channel conditions. In addition, thePCCCs offer better performance than SCCCs

    Optimal soft-decoding combined trellis-coded quantization/modulation.

    Get PDF
    Chei Kwok-hung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 66-73).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Typical Digital Communication Systems --- p.2Chapter 1.1.1 --- Source coding --- p.3Chapter 1.1.2 --- Channel coding --- p.5Chapter 1.2 --- Joint Source-Channel Coding System --- p.5Chapter 1.3 --- Thesis Organization --- p.7Chapter Chapter 2 --- Trellis Coding --- p.9Chapter 2.1 --- Convolutional Codes --- p.9Chapter 2.2 --- Trellis-Coded Modulation --- p.12Chapter 2.2.1 --- Set Partitioning --- p.13Chapter 2.3 --- Trellis-Coded Quantization --- p.14Chapter 2.4 --- Joint TCQ/TCM System --- p.17Chapter 2.4.1 --- The Combined Receiver --- p.17Chapter 2.4.2 --- Viterbi Decoding --- p.19Chapter 2.4.3 --- Sequence MAP Decoding --- p.20Chapter 2.4.4 --- Sliding Window Decoding --- p.21Chapter 2.4.5 --- Block-Based Decoding --- p.23Chapter Chapter 3 --- Soft Decoding Joint TCQ/TCM over AWGN Channel --- p.25Chapter 3.1 --- System Model --- p.26Chapter 3.2 --- TCQ with Optimal Soft-Decoder --- p.27Chapter 3.3 --- Gaussian Memoryless Source --- p.30Chapter 3.3.1 --- Theorem Limit --- p.31Chapter 3.3.2 --- Performance on PAM Constellations --- p.32Chapter 3.3.3 --- Performance on PSK Constellations --- p.36Chapter 3.4 --- Uniform Memoryless Source --- p.38Chapter 3.4.1 --- Theorem Limit --- p.38Chapter 3.4.2 --- Performance on PAM Constellations --- p.39Chapter 3.4.3 --- Performance on PSK Constellations --- p.40Chapter Chapter 4 --- Soft Decoding Joint TCQ/TCM System over Rayleigh Fading Channel --- p.42Chapter 4.1 --- Wireless Channel --- p.43Chapter 4.2 --- Rayleigh Fading Channel --- p.44Chapter 4.3 --- Idea Interleaving --- p.45Chapter 4.4 --- Receiver Structure --- p.46Chapter 4.5 --- Numerical Results --- p.47Chapter 4.5.1 --- Performance on 4-PAM Constellations --- p.48Chapter 4.5.2 --- Performance on 8-PAM Constellations --- p.50Chapter 4.5.3 --- Performance on 16-PAM Constellations --- p.52Chapter Chapter 5 --- Joint TCVQ/TCM System --- p.54Chapter 5.1 --- Trellis-Coded Vector Quantization --- p.55Chapter 5.1.1 --- Set Partitioning in TCVQ --- p.56Chapter 5.2 --- Joint TCVQ/TCM --- p.59Chapter 5.2.1 --- Set Partitioning and Index Assignments --- p.60Chapter 5.2.2 --- Gaussian-Markov Sources --- p.61Chapter 5.3 --- Simulation Results and Discussion --- p.62Chapter Chapter 6 --- Conclusion and Future Work --- p.64Chapter 6.1 --- Conclusion --- p.64Chapter 6.2 --- Future Works --- p.65Bibliography --- p.66Appendix-Publications --- p.7
    • …
    corecore