534 research outputs found

    Histogram equalization for robust text-independent speaker verification in telephone environments

    Get PDF
    Word processed copy. Includes bibliographical references

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    DAugNet: Unsupervised, Multi-source, Multi-target, and Life-long Domain Adaptation for Semantic Segmentation of Satellite Images

    Full text link
    The domain adaptation of satellite images has recently gained an increasing attention to overcome the limited generalization abilities of machine learning models when segmenting large-scale satellite images. Most of the existing approaches seek for adapting the model from one domain to another. However, such single-source and single-target setting prevents the methods from being scalable solutions, since nowadays multiple source and target domains having different data distributions are usually available. Besides, the continuous proliferation of satellite images necessitates the classifiers to adapt to continuously increasing data. We propose a novel approach, coined DAugNet, for unsupervised, multi-source, multi-target, and life-long domain adaptation of satellite images. It consists of a classifier and a data augmentor. The data augmentor, which is a shallow network, is able to perform style transfer between multiple satellite images in an unsupervised manner, even when new data are added over the time. In each training iteration, it provides the classifier with diversified data, which makes the classifier robust to large data distribution difference between the domains. Our extensive experiments prove that DAugNet significantly better generalizes to new geographic locations than the existing approaches

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Robust gesture recognition

    Get PDF
    It is a challenging problem to make a general hand gesture recognition system work in a practical operation environment. In this study, it is mainly focused on recognizing English letters and digits performed near the steering wheel of a car and captured by a video camera. Like most human computer interaction (HCI) scenarios, the in-car gesture recognition suffers from various robustness issues, including multiple human factors and highly varying lighting conditions. It therefore brings up quite a few research issues to be addressed. First, multiple gesturing alternatives may share the same meaning, which is not typical in most previous systems. Next, gestures may not be the same as expected because users cannot see what exactly has been written, which increases the gesture diversity significantly.In addition, varying illumination conditions will make hand detection trivial and thus result in noisy hand gestures. And most severely, users will tend to perform letters at a fast pace, which may result in lack of frames for well-describing gestures. Since users are allowed to perform gestures in free-style, multiple alternatives and variations should be considered while modeling gestures. The main contribution of this work is to analyze and address these challenging issues step-by-step such that eventually the robustness of the whole system can be effectively improved. By choosing color-space representation and performing the compensation techniques for varying recording conditions, the hand detection performance for multiple illumination conditions is first enhanced. Furthermore, the issues of low frame rate and different gesturing tempo will be separately resolved via the cubic B-spline interpolation and i-vector method for feature extraction. Finally, remaining issues will be handled by other modeling techniques such as sub-letter stroke modeling. According to experimental results based on the above strategies, the proposed framework clearly improved the system robustness and thus encouraged the future research direction on exploring more discriminative features and modeling techniques.Ph.D

    Statistical facial feature extraction and lip segmentation

    Get PDF
    Facial features such as lip corners, eye corners and nose tip are critical points in a human face. Robust extraction of such facial feature locations is an important problem which is used in a wide range of applications including audio-visual speech recognition, human-computer interaction, emotion recognition, fatigue detection and gesture recognition. In this thesis, we develop a probabilistic method for facial feature extraction. This technique is able to automatically learn location and texture information of facial features from a training set. Facial feature locations are extracted from face regions using joint distributions of locations and textures represented with mixtures of Gaussians. This formulation results in a maximum likelihood (ML) optimization problem which can be solved using either a gradient ascent or Newton type algorithm. Extracted lip corner locations are then used to initialize a lip segmentation algorithm to extract the lip contours. We develop a level-set based method that utilizes adaptive color distributions and shape priors for lip segmentation. More precisely, an implicit curve representation which learns the color information of lip and non-lip points from a training set is employed. The model can adapt itself to the image of interest using a coarse elliptical region. Extracted lip contour provides detailed information about the lip shape. Both methods are tested using different databases for facial feature extraction and lip segmentation. It is shown that the proposed methods achieve better results compared to conventional methods. Our facial feature extraction method outperforms the active appearance models in terms of pixel errors, while our lip segmentation method outperforms region based level-set curve evolutions in terms of precision and recall results

    On accuracy/robustness/complexity trade-offs in face verification

    Get PDF
    Copyright © 2005 IEEEIn much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose). However, a practical recognition system has to be robust to more challenging conditions. In this paper we first evaluate, on the relatively difficult BANCA database, the discrimination accuracy, robustness and complexity of Gaussian Mixture Model (GMM), 1D- and pseudo-2D Hidden Markov Model (HMM) based systems, using both manual and automatic face localization. We also propose to extend the GMM approach through the use of local features with embedded positional information, increasing accuracy without sacrificing its low complexity. Experiments show that good accuracy on manually located faces is not necessarily indicative of good accuracy on automatically located faces (which are imperfectly located). The deciding factor is shown to be the degree of constraints placed on spatial relations between face parts. Methods which utilize rigid constraints have poor robustness compared to methods which have relaxed constraints. Furthermore, we show that while the pseudo-2D HMM approach has the best overall accuracy, classification time on current hardware makes it impractical. The best trade-off in terms of complexity, robustness and discrimination accuracy is achieved by the extended GMM approach.Conrad Sanderson, Fabien Cardinaux, Samy Bengi

    Face Processing & Frontal Face Verification

    Get PDF
    In this report we first review important publications in the field of face recognition; geometric features, templates, Principal Component Analysis (PCA), pseudo-2D Hidden Markov Models, Elastic Graph Matching, as well as other points are covered; important issues, such as the effects of an illumination direction change and the use of different face areas, are also covered. A new feature set (termed DCT-mod2) is then proposed; the feature set utilizes polynomial coefficients derived from 2D Discrete Cosine Transform (DCT) coefficients obtained from horizontally & vertically neighbouring blocks. Face authentication results on the VidTIMIT database suggest that the proposed feature set is superior (in terms of robustness to illumination changes and discrimination ability) to features extracted using four popular methods: PCA, PCA with histogram equalization pre-processing, 2D DCT and 2D Gabor wavelets; the results also suggest that histogram equalization pre-processing increases the error rate and offers no help against illumination changes. Moreover, the proposed feature set is over 80 times faster to compute than features based on 2D Gabor wavelets. Further experiments on the Weizmann Database also show that the proposed approach is more robust than 2D Gabor wavelets and 2D DCT coefficients
    corecore