994 research outputs found

    On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks

    Full text link
    Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a blessing because it collects data directly from the nodes where the concept of relay nodes is becomes obsolete. There are, however, a few challenges to be taken care of, like data delay tolerance and trajectory of MS which is NP-hard. In our proposed scheme, we divide the square field in small squares. Middle point of the partitioned area is the sojourn location of the sink, and nodes around MS are in its transmission range, which send directly the sensed data in a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and having four sojourn locations and other in outer trajectory having twelve sojourn locations. Introduction of the joint mobility enhances network life and ultimately throughput. As the MS comes under the NP-hard problem, we convert it into a geometric problem and define it as, Geometric Sink Movement (GSM). A set of linear programming equations has also been given in support of GSM which prolongs network life time

    Dimensioning and worst-case analysis of cluster-tree sensor networks

    Get PDF
    Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS

    Performance optimization of wireless sensor networks for remote monitoring

    Get PDF
    Wireless sensor networks (WSNs) have gained worldwide attention in recent years because of their great potential for a variety of applications such as hazardous environment exploration, military surveillance, habitat monitoring, seismic sensing, and so on. In this thesis we study the use of WSNs for remote monitoring, where a wireless sensor network is deployed in a remote region for sensing phenomena of interest while its data monitoring center is located in a metropolitan area that is geographically distant from the monitored region. This application scenario poses great challenges since such kind of monitoring is typically large scale and expected to be operational for a prolonged period without human involvement. Also, the long distance between the monitored region and the data monitoring center requires that the sensed data must be transferred by the employment of a third-party communication service, which incurs service costs. Existing methodologies for performance optimization of WSNs base on that both the sensor network and its data monitoring center are co-located, and therefore are no longer applicable to the remote monitoring scenario. Thus, developing new techniques and approaches for severely resource-constrained WSNs is desperately needed to maintain sustainable, unattended remote monitoring with low cost. Specifically, this thesis addresses the key issues and tackles problems in the deployment of WSNs for remote monitoring from the following aspects. To maximize the lifetime of large-scale monitoring, we deal with the energy consumption imbalance issue by exploring multiple sinks. We develop scalable algorithms which determine the optimal number of sinks needed and their locations, thereby dynamically identifying the energy bottlenecks and balancing the data relay workload throughout the network. We conduct experiments and the experimental results demonstrate that the proposed algorithms significantly prolong the network lifetime. To eliminate imbalance of energy consumption among sensor nodes, a complementary strategy is to introduce a mobile sink for data gathering. However, the limited communication time between the mobile sink and nodes results in that only part of sensed data will be collected and the rest will be lost, for which we propose the concept of monitoring quality with the exploration of sensed data correlation among nodes. We devise a heuristic for monitoring quality maximization, which schedules the sink to collect data from selected nodes, and uses the collected data to recover the missing ones. We study the performance of the proposed heuristic and validate its effectiveness in improving the monitoring quality. To strive for the fine trade-off between two performance metrics: throughput and cost, we investigate novel problems of minimizing cost with guaranteed throughput, and maximizing throughput with minimal cost. We develop approximation algorithms which find reliable data routing in the WSN and strategically balance workload on the sinks. We prove that the delivered solutions are fractional of the optimum. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Strengths and Weaknesses of Prominent Data Dissemination Techniques in Wireless Sensor Networks

    Get PDF
    Data dissemination is the most significant task in a Wireless Sensor Network (WSN). From the bootstrapping stage to the full functioning stage, a WSN must disseminate data in various patterns like from the sink to node, from node to sink, from node to node, or the like. This is what a WSN is deployed for. Hence, this issue comes with various data routing models and often there are different types of network settings that influence the way of data collection and/or distribution. Considering the importance of this issue, in this paper, we present a survey on various prominent data dissemination techniques in such network. Our classification of the existing works is based on two main parameters: the number of sink (single or multiple) and the nature of its movement (static or mobile). Under these categories, we have analyzed various previous works for their relative strengths and weaknesses. A comparison is also made based on the operational methods of various data dissemination schemes

    Data Collection Protocols For Wireless Sensor Networks

    Get PDF
    Data collection in wireless sensor networks (WSNs) has a significant impact on the network’s performance and lifetime. Recently, several data collection techniques that use mobile elements (MEs) have been recommended, especially techniques that focus on maximising data delivery. However, energy consumption and the time required for data collection are significant for many WSN applications, particularly real-time systems. In this paper, a review of data collection techniques is presented, providing a comparison between the maximum amount shortest path (MASP) and zone-based energy-aware (ZEAL) data collection protocols implemented in the NS-3 simulator. Finally, the study provides a suitable data collection strategy that satisfies the requirements of WSN applications in terms of data delivery, energy consumption, and the time required for data collection

    Real-Time Data Acquisition in Wireless Sensor Networks

    Get PDF
    • …
    corecore