43 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Rainbow spanning subgraphs in bounded edge–colourings of graphs with large minimum degree

    Get PDF
    We study the existence of rainbow perfect matching and rainbow Hamiltonian cycles in edge–colored graphs where every color appears a bounded number of times. We derive asymptotically tight bounds on the minimum degree of the host graph for the existence of such rainbow spanning structures. The proof uses a probabilisitic argument combined with switching techniques.Postprint (updated version

    Master index of volumes 161–170

    Get PDF

    On sufficient conditions for Hamiltonicity in dense graphs

    Full text link
    We study structural conditions in dense graphs that guarantee the existence of vertex-spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. Our main result in turn states that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Moreover, the same holds for embedding powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This solves the embedding problem that underlies multiple lines of research on sufficient conditions for Hamiltonicity in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore-type degree conditions, P\'osa-type degree conditions, deficiency-type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Matchings and Covers in Hypergraphs

    Get PDF
    In this thesis, we study three variations of matching and covering problems in hypergraphs. The first is motivated by an old conjecture of Ryser which says that if \mcH is an rr-uniform, rr-partite hypergraph which does not have a matching of size at least ν+1\nu +1, then \mcH has a vertex cover of size at most (r−1)ν(r-1)\nu. In particular, we examine the extremal hypergraphs for the r=3r=3 case of Ryser's conjecture. In 2014, Haxell, Narins, and Szab{\'{o}} characterized these 33-uniform, tripartite hypergraphs. Their work relies heavily on topological arguments and seems difficult to generalize. We reprove their characterization and significantly reduce the topological dependencies. Our proof starts by using topology to show that every 33-uniform, tripartite hypergraph has two matchings which interact with each other in a very restricted way. However, the remainder of the proof uses only elementary methods to show how the extremal hypergraphs are built around these two matchings. Our second motivational pillar is Tuza's conjecture from 1984. For graphs GG and HH, let νH(G)\nu_{H}(G) denote the size of a maximum collection of pairwise edge-disjoint copies of HH in GG and let τH(G)\tau_{H}(G) denote the minimum size of a set of edges which meets every copy of HH in GG. The conjecture is relevant to the case where H=K3H=K_{3} and says that τ▽(G)≤2ν▽(G)\tau_{\triangledown}(G) \leq 2\nu_{\triangledown}(G) for every graph GG. In 1998, Haxell and Kohayakawa proved that if GG is a tripartite graph, then τ▽(G)≤1.956ν▽(G)\tau_{\triangledown}(G) \leq 1.956\nu_{\triangledown}(G). We use similar techniques plus a topological result to show that τ▽(G)≤1.87ν▽(G)\tau_{\triangledown}(G) \leq 1.87\nu_{\triangledown}(G) for all tripartite graphs GG. We also examine a special subclass of tripartite graphs and use a simple network flow argument to prove that τ▽(H)=ν▽(H)\tau_{\triangledown}(H) = \nu_{\triangledown}(H) for all such graphs HH. We then look at the problem of packing and covering edge-disjoint K4K_{4}'s. Yuster proved that if a graph GG does not have a fractional packing of K4K_{4}'s of size bigger than ν⊠∗(G)\nu_{\boxtimes}^{*}(G), then τ⊠(G)≤4ν⊠∗(G)\tau_{\boxtimes}(G) \leq 4\nu_{\boxtimes}^{*}(G). We give a complementary result to Yuster's for K4K_{4}'s: We show that every graph GG has a fractional cover of K4K_{4}'s of size at most 92ν⊠(G)\frac{9}{2}\nu_{\boxtimes}(G). We also provide upper bounds on τ⊠\tau_{\boxtimes} for several classes of graphs. Our final topic is a discussion of fractional stable matchings. Tan proved that every graph has a 12\frac{1}{2}-integral stable matching. We consider hypergraphs. There is a natural notion of fractional stable matching for hypergraphs, and we may ask whether an analogous result exists for this setting. We show this is not the case: Using a construction of Chung, F{\"{u}}redi, Garey, and Graham, we prove that, for all n \in \mbN, there is a 33-uniform hypergraph with preferences with a fractional stable matching that is unique and has denominators of size at least nn

    Subject Index Volumes 1–200

    Get PDF
    corecore