90 research outputs found

    Student-t Processes as Alternatives to Gaussian Processes

    Full text link
    We investigate the Student-t process as an alternative to the Gaussian process as a nonparametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the covariance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process -- a nonparametric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels -- but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications like Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.Comment: 13 pages, 6 figures, 1 table. To appear in "The Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

    On Bayesian inference with conjugate priors for scale mixtures of normal distributions

    Get PDF
    Bayesian inference is considered for the multivariate regression model with distribution of the random responses belonging to the multivariate scale mixtures of normal distributions. The posterior distribution of the regression parameters and the predictive distribution of future responses for the model are derived when the prior distribution of the parameters is from the conjugate family and they are shown to be identical to those obtained under normally distributed random responses. This gives inference robustness with respect to departures from the reference case of independent sampling from the normal distribution

    Robust Modeling Using Non-Elliptically Contoured Multivariate t Distributions

    Full text link
    Models based on multivariate t distributions are widely applied to analyze data with heavy tails. However, all the marginal distributions of the multivariate t distributions are restricted to have the same degrees of freedom, making these models unable to describe different marginal heavy-tailedness. We generalize the traditional multivariate t distributions to non-elliptically contoured multivariate t distributions, allowing for different marginal degrees of freedom. We apply the non-elliptically contoured multivariate t distributions to three widely-used models: the Heckman selection model with different degrees of freedom for selection and outcome equations, the multivariate Robit model with different degrees of freedom for marginal responses, and the linear mixed-effects model with different degrees of freedom for random effects and within-subject errors. Based on the Normal mixture representation of our t distribution, we propose efficient Bayesian inferential procedures for the model parameters based on data augmentation and parameter expansion. We show via simulation studies and real examples that the conclusions are sensitive to the existence of different marginal heavy-tailedness

    Combining vocal tract length normalization with hierarchial linear transformations

    Get PDF
    Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR-based adaptation techniques, being much closer in quality to that generated by the original av-erage voice model. However with only a single parameter, VTLN captures very few speaker specific characteristics when compared to linear transform based adaptation techniques. This paper pro-poses that the merits of VTLN can be combined with those of linear transform based adaptation in a hierarchial Bayesian frame-work, where VTLN is used as the prior information. A novel tech-nique for propagating the gender information from the VTLN prior through constrained structural maximum a posteriori linear regres-sion (CSMAPLR) adaptation is presented. Experiments show that the resulting transformation has improved speech quality with better naturalness, intelligibility and improved speaker similarity. Index Terms — Statistical parametric speech synthesis, hidden Markov models, speaker adaptation, vocal tract length normaliza-tion, constrained structural maximum a posteriori linear regression 1

    Bayesian inference for skew-symmetric distributions

    Get PDF
    Skew-symmetric distributions are a popular family of flexible distributions that conveniently model non-normal features such as skewness, kurtosis and multimodality. Unfortunately, their frequentist inference poses several difficulties, which may be adequately addressed by means of a Bayesian approach. This paper reviews the main prior distributions proposed for the parameters of skew-symmetric distributions, with special emphasis on the skew-normal and the skew-t distributions which are the most prominent skew-symmetric models. The paper focuses on the univariate case in the absence of covariates, but more general models are also discussed

    Volume Contents

    Get PDF
    corecore