38 research outputs found

    The quotients between the (revised) Szeged index and Wiener index of graphs

    Full text link
    Let Sz(G),Sz∗(G)Sz(G),Sz^*(G) and W(G)W(G) be the Szeged index, revised Szeged index and Wiener index of a graph G.G. In this paper, the graphs with the fourth, fifth, sixth and seventh largest Wiener indices among all unicyclic graphs of order n⩾10n\geqslant 10 are characterized; as well the graphs with the first, second, third, and fourth largest Wiener indices among all bicyclic graphs are identified. Based on these results, further relation on the quotients between the (revised) Szeged index and the Wiener index are studied. Sharp lower bound on Sz(G)/W(G)Sz(G)/W(G) is determined for all connected graphs each of which contains at least one non-complete block. As well the connected graph with the second smallest value on Sz∗(G)/W(G)Sz^*(G)/W(G) is identified for GG containing at least one cycle.Comment: 25 pages, 5 figure

    Graphical Indices and their Applications

    Get PDF
    The biochemical community has been using graphical (topological, chemical) indices in the study of Quantitative Structure-Activity Relationships (QSAR) and Quantitative Structure-Property Relationships (QSPR), as they have been shown to have strong correlations with the chemical properties of certain chemical compounds (i.e. boiling point, surface area, etc.). We examine some of these chemical indices and closely related pure graph theoretical indices: the Randić index, the Wiener index, the degree distance, and the number of subtrees. We find which structure will maximize the Randić index of a class of graphs known as cacti, and we find a functional relationship between the Wiener index and the degree distance for several types of graphs. We also develop an algorithm to find the structure that maximizes the number of subtrees of trees, a characterization of the second maximal tree may also follow as an immediate result of this algorithm
    corecore