1,937 research outputs found

    Planar digraphs without large acyclic sets

    Full text link
    Given a directed graph, an acyclic set is a set of vertices inducing a subgraph with no directed cycle. In this note we show that there exist oriented planar graphs of order nn for which the size of the maximum acyclic set is at most ⌈n+12⌉\lceil \frac{n+1}{2} \rceil, for any nn. This disproves a conjecture of Harutyunyan and shows that a question of Albertson is best possible.Comment: 3 pages, 1 figur

    Optimal Acyclic Hamiltonian Path Completion for Outerplanar Triangulated st-Digraphs (with Application to Upward Topological Book Embeddings)

    Full text link
    Given an embedded planar acyclic digraph G, we define the problem of "acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM)" to be the problem of determining an hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian digraph. Our results include: --We provide a characterization under which a triangulated st-digraph G is hamiltonian. --For an outerplanar triangulated st-digraph G, we define the st-polygon decomposition of G and, based on its properties, we develop a linear-time algorithm that solves the Acyclic-HPCCM problem with at most one crossing per edge of G. --For the class of st-planar digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. We infer (based on this equivalence) for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. To the best of our knowledge, it is the first time that edge-crossing minimization is studied in conjunction with the acyclic hamiltonian completion problem and the first time that an optimal algorithm with respect to spine crossing minimization is presented for upward topological book embeddings

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Computing k-Modal Embeddings of Planar Digraphs

    Get PDF
    Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family

    Join-Reachability Problems in Directed Graphs

    Full text link
    For a given collection G of directed graphs we define the join-reachability graph of G, denoted by J(G), as the directed graph that, for any pair of vertices a and b, contains a path from a to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient representation of J(G). In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for G. In the implicit version we wish to build an efficient data structure (in terms of space and query time) such that we can report fast the set of vertices that reach a query vertex in all graphs of G. This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problem. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page
    • …
    corecore