2,278 research outputs found

    Spatially regularized multi-exponential transverse relaxation times estimation from magnitude MRI images under Rician noise

    Get PDF
    International audienceSynopsis This work aims at improving the estimation of multi-exponential transverse relaxation times from noisy magnitude MRI images. A spatially regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise was introduced. This approach is compared to a Rician corrected least-square criterion with the introduction of spatial regularization. To deal with the large-scale optimization problem, a majoration-minimization approach was used, allowing the implementation of both the maximum-likelihood estimator and the spatial regularization. The importance of the regularization alongside the rician noise incorporation is shown both visually and numerically on magnitude MRI images acquired on fruit samples. Purpose Multi-exponential relaxation times and their associated amplitudes in an MRI image provide very useful information for assessing the constituents of the imaged sample. Typical examples are the detection of water compartments of plant tissues and the quanti cation of myelin water fraction for multiple sclerosis disease diagnosis. The estimation of the multi-exponential signal model from magnitude MRI images faces the problem of a relatively low signal to noise ratio (SNR), with a Rician distributed noise and a large-scale optimization problem when dealing with the entire image. Actually, maps are composed of coherent regions with smooth variations between neighboring voxels. This study proposes an e cient reconstruction method of values and amplitudes from magnitude images by incorporating this information in order to reduce the noise e ect. The main feature of the method is to use a regularized maximum likelihood estimator derived from a Rician likelihood and a Majorization-Minimization approach coupled with the Levenberg-Marquardt algorithm to solve the large-scale optimization problem. Tests were conducted on apples and the numerical results are given to illustrate the relevance of this method and to discuss its performances. Methods For each voxel of the MRI image, the measured signal at echo time is represented by a multi-exponential model: with The data are subject to an additive Gaussian noise in the complex domain and therefore magnitude MRI data follows a Rician distribution : is the rst kind modi ed Bessel function of order 0 and is the standard deviation of the noise which is usually estimated from the image background. For an MRI image with voxels, the model parameters are usually estimated by minimizing the least-squares (LS) criterion under the assumption of a Gaussian noise using nonlinear LS solvers such as Levenberg-Marquardt (LM). However, this approach does not yield satisfying results when applied to magnitude data. Several solutions to overcome this issue are proposed by adding a correction term to the LS criterion. In this study, the retained correction uses the expectation value of data model under the hypothesis of Rician distribution since it outperforms the other correction strategies: stands for the sum of squares. We refer to this method as Rician corrected LS (RCLS). A more direct way for solving this estimation problem is to use a maximum likelihood (ML) estimator which comes down to minimize: To solve this optimization problem when dealing with the entire image, a majorization-minimization (MM) technique was adopted. The resulting MM-ML algorithm is summarized in gure 1, the LM algorithm used in this method minimizes a set of LS criteria derived from the quadratic majorization strategy. A spatial regularization term based on a cost function was also added to both criteria (and) to ensure spatial smoothness of the estimated maps. In order to reduce the numerical complexity by maintaining variable separability between each voxel and it's neighboring voxels , the function is majorized by : where stands for the iteration number of the iterative optimization algorithm

    Automatic, fast and robust characterization of noise distributions for diffusion MRI

    Full text link
    Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g. coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.Comment: v2: added publisher DOI statement, fixed text typo in appendix A

    The Strehl Ratio in Adaptive Optics Images: Statistics and Estimation

    Full text link
    Statistical properties of the intensity in adaptive optics images are usually modeled with a Rician distribution. We study the central point of the image, where this model is inappropriate for high to very high correction levels. The central point is an important problem because it gives the Strehl ratio distribution. We show that the central point distribution can be modeled using a non-central Gamma distribution.Comment: 8 pages, 5 figure

    Data augmentation in Rician noise model and Bayesian Diffusion Tensor Imaging

    Full text link
    Mapping white matter tracts is an essential step towards understanding brain function. Diffusion Magnetic Resonance Imaging (dMRI) is the only noninvasive technique which can detect in vivo anisotropies in the 3-dimensional diffusion of water molecules, which correspond to nervous fibers in the living brain. In this process, spectral data from the displacement distribution of water molecules is collected by a magnetic resonance scanner. From the statistical point of view, inverting the Fourier transform from such sparse and noisy spectral measurements leads to a non-linear regression problem. Diffusion tensor imaging (DTI) is the simplest modeling approach postulating a Gaussian displacement distribution at each volume element (voxel). Typically the inference is based on a linearized log-normal regression model that can fit the spectral data at low frequencies. However such approximation fails to fit the high frequency measurements which contain information about the details of the displacement distribution but have a low signal to noise ratio. In this paper, we directly work with the Rice noise model and cover the full range of bb-values. Using data augmentation to represent the likelihood, we reduce the non-linear regression problem to the framework of generalized linear models. Then we construct a Bayesian hierarchical model in order to perform simultaneously estimation and regularization of the tensor field. Finally the Bayesian paradigm is implemented by using Markov chain Monte Carlo.Comment: 37 pages, 3 figure

    Statistical Analysis of a Posteriori Channel and Noise Distribution Based on HARQ Feedback

    Full text link
    In response to a comment on one of our manuscript, this work studies the posterior channel and noise distributions conditioned on the NACKs and ACKs of all previous transmissions in HARQ system with statistical approaches. Our main result is that, unless the coherence interval (time or frequency) is large as in block-fading assumption, the posterior distribution of the channel and noise either remains almost identical to the prior distribution, or it mostly follows the same class of distribution as the prior one. In the latter case, the difference between the posterior and prior distribution can be modeled as some parameter mismatch, which has little impact on certain type of applications.Comment: 15 pages, 2 figures, 4 table

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10−310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10−310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa
    • …
    corecore