5,130 research outputs found

    Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    Get PDF
    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail

    Reliability Analysis of Hafnium Oxide Dielectric Based Nanoelectronics

    Get PDF
    With the physical dimensions ever scaling down, the increasing level of sophistication in nano-electronics requires a comprehensive and multidisciplinary reliability investigation. A kind of nano-devices, HfO2-based high-k dielectric films, are studied in the statistical aspect of reliability as well as electrical and physical aspects of reliability characterization, including charge trapping and degradation mechanisms, breakdown modes and bathtub failure rate estimation. This research characterizes charge trapping and investigates degradation mechanisms in high-k dielectrics. Positive charges trapped in both bulk and interface contribute to the interface state generation and flat band voltage shift when electrons are injected from the gate under a negative gate bias condition.A negligible number of defects are generated until the stress voltage increases to a certain level. As results of hot electrons and positive charges trapped in the interface region, the difference in the breakdown sequence is attributed to the physical thickness of the bulk high-k layer and the structure of the interface layer. Time-to-breakdown data collected in the accelerated life tests are modeled with a bathtub failure rate curve by a 3-step Bayesian approach. Rather than individually considering each stress level in accelerating life tests (ALT), this approach derives the change point and the priors for Bayesian analysis from the time-to-failure data under neighborhood stresses, based on the relationship between the lifetime and stress voltage. This method can provide a fast and reliable estimation of failure rate for burn-in optimization when only a small sample of data is available

    A PROBABILISTIC MECHANISTIC APPROACH FOR ASSESSING THE RUPTURE FREQUENCY OF SMALL MODULAR REACTOR STEAM GENERATOR TUBES USING UNCERTAIN INPUTS FROM IN-SERVICE INSPECTIONS

    Get PDF
    One of the significant safety issues in nuclear power plants is the rupture of steam generator tubes leading to the loss of radioactive primary coolant inventory and establishment of a path that would bypass the plant's containment structure. Frequency of steam generator tube ruptures is required in probabilistic safety assessments of pressurized water reactors to determine the risks of radionuclide release. The estimation of this frequency has traditionally been based on non-homogeneous historical data that are not applicable to small modular reactors consisting of new steam generator designs. In this research a probabilistic mechanistic-based approach has been developed for assessing the frequency of steam generator tube ruptures. Physics-of-failure concept has been used to formulate mechanistic degradation models considering the underlying degradation conditions prevailing in steam generators. Uncertainties associated with unknown or partially known factors such as material properties, manufacturing methods, and model uncertainties have been characterized, and considered in the assessment of rupture frequency. An application of the tube rupture frequency assessment approach has been demonstrated for tubes of a typical helically-coiled steam generator proposed in most of the new small modular reactors. The tube rupture frequency estimated through the proposed approach is plant-specific and more representative for use in risk-informed safety assessment of small modular reactors. Information regarding the health condition of steam generator tubes from in-service inspections may be used to update the pre-service estimates of tube rupture frequency. In-service inspection data are uncertain in nature due to detection uncertainties and measurement errors associated with nondestructive evaluation methods, which if not properly accounted for, can result in over- or under-estimation of tube rupture frequency. A Bayesian probabilistic approach has been developed in this research that combines prior knowledge on defects with uncertain in-service inspection data, considering all the associated uncertainties to give a probabilistic description of the real defect size and density in the tubes. An application of the proposed Bayesian approach has been provided. Defect size and density estimated through the proposed Bayesian approach can be used to update the pre-service estimates of tube rupture frequency, in order to support risk-informed maintenance and regulatory decision-making

    Degradation analysis of metal oxide varistors under harmonic distortion conditions

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree Doctor of Philosophy in Electrical Engineering May 2016Modern electrical networks provide an opportunity for inevitable interaction between metal oxide arresters and power system harmonics. Therefore, these arrester devices are continuously exposed to the combined e ect of distorted system voltage and envi- ronmental thermal stresses. Recent studies supported by eld experiments have shown signi cant rise in the leakage current through these surge arrester devices when exposed to ac voltage with harmonics. However, the major shortcoming in the current knowledge and applications of varistor arresters resides on the reliability and the electrical stabil- ity of these overvoltage protection units, when subjected to long-term and continuous distorted ac voltage and thermal stresses from the environment. Commercially-sourced ZnO arresters of similar size and electrical properties are tested using standard ac accelerated degradation procedure or electro-thermal ageing test. The times to degradation, the coe cient of non-linearity, the reference voltages, as well as the clamping voltage measured are used to analyse the reliability and the electrical stability of the metal oxide-based arrester samples. The resistive component of the leakage current is extracted from the measured total leakage current. The three-parameter Weibull probability model is invoked in order to analyze the degradation phenomenon.MT201
    • …
    corecore