2,315 research outputs found

    Learning Edge Representations via Low-Rank Asymmetric Projections

    Full text link
    We propose a new method for embedding graphs while preserving directed edge information. Learning such continuous-space vector representations (or embeddings) of nodes in a graph is an important first step for using network information (from social networks, user-item graphs, knowledge bases, etc.) in many machine learning tasks. Unlike previous work, we (1) explicitly model an edge as a function of node embeddings, and we (2) propose a novel objective, the "graph likelihood", which contrasts information from sampled random walks with non-existent edges. Individually, both of these contributions improve the learned representations, especially when there are memory constraints on the total size of the embeddings. When combined, our contributions enable us to significantly improve the state-of-the-art by learning more concise representations that better preserve the graph structure. We evaluate our method on a variety of link-prediction task including social networks, collaboration networks, and protein interactions, showing that our proposed method learn representations with error reductions of up to 76% and 55%, on directed and undirected graphs. In addition, we show that the representations learned by our method are quite space efficient, producing embeddings which have higher structure-preserving accuracy but are 10 times smaller

    Maximum a Posteriori Inference of Random Dot Product Graphs via Conic Programming

    Full text link
    We present a convex cone program to infer the latent probability matrix of a random dot product graph (RDPG). The optimization problem maximizes the Bernoulli maximum likelihood function with an added nuclear norm regularization term. The dual problem has a particularly nice form, related to the well-known semidefinite program relaxation of the MaxCut problem. Using the primal-dual optimality conditions, we bound the entries and rank of the primal and dual solutions. Furthermore, we bound the optimal objective value and prove asymptotic consistency of the probability estimates of a slightly modified model under mild technical assumptions. Our experiments on synthetic RDPGs not only recover natural clusters, but also reveal the underlying low-dimensional geometry of the original data. We also demonstrate that the method recovers latent structure in the Karate Club Graph and synthetic U.S. Senate vote graphs and is scalable to graphs with up to a few hundred nodes.Comment: submitted for publication in SIAM Journal on Optimization (SIOPT

    Complex Embeddings for Simple Link Prediction

    Get PDF
    In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.Comment: 10+2 pages, accepted at ICML 201
    • …
    corecore