9 research outputs found

    TĂŠcnicas com mĂşltiplas antenas distribuĂ­das para sistemas sem fios

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçþesTransmissão cooperativa, em que uma fonte e um relay cooperam para enviar uma mensagem para o destino, pode proporcionar diversidade espacial contra o desvanecimento nas comunicaçþes sem fios. O objectivo deste projecto Ê estudar a performance de um sistema de transmissão cooperativo com dois relays equipados com duas antenas, entre o transmissor e o utilizador. Considera-se que a estação base estå equipada com duas antenas e o terminal móvel apenas com uma. O sistema cooperativo foi implementado de acordo com as especificaçþes do LTE e avaliado em diversos cenårios de propagação, considerando canais com diferentes Relação Sinal Ruído (SNR). Verificou-se que o desempenho do sistema proposto Ê melhor, quando comparado com o sistema não cooperativo, na maior parte dos cenårios estudados.Cooperative transmission, in which a source and relay cooperate to sent a mensage to destination, can provide spatial diversity against fading in wirless telecomunications. The goal of this project is to study the perfomance of a cooperative tranmition systems with two relays equiped with two antennas, between transmitter and user. It is considered that the base station is equipped with two antennas and the mobile terminal with only one. The cooperative system was implemented according to the specifications of the LTE and evaluated at several propagation scenarios, considering channels with diferents Signal to Noise Ratio (SNR). It was found that the perfomance of the proposed system is better when compared with the non-cooperative ones, in most scenarios considered.CODIV/FP7-ICT-200

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Exploiting diversity in wireless channels with bit-interleaved coded modulation and iterative decoding (BICM-ID)

    Get PDF
    This dissertation studies a state-of-the-art bandwidth-efficient coded modulation technique, known as bit interleaved coded modulation with iterative decoding (BICM-ID), together with various diversity techniques to dramatically improve the performance of digital communication systems over wireless channels. For BICM-ID over a single-antenna frequency non-selective fading channel, the problem of mapping over multiple symbols, i.e., multi-dimensional (multi-D) mapping, with 8-PSK constellation is investigated. An explicit algorithm to construct a good multi-D mapping of 8-PSK to improve the asymptotic performance of BICM-ID systems is introduced. By comparing the performance of the proposed mapping with an unachievable lower bound, it is conjectured that the proposed mapping is the global optimal mapping. The superiority of the proposed mapping over the best conventional (1-dimensional complex) mapping and the multi-D mapping found previously by computer search is thoroughly demonstrated. In addition to the mapping issue in single-antenna BICM-ID systems, the use of signal space diversity (SSD), also known as linear constellation precoding (LCP), is considered in BICM-ID over frequency non-selective fading channels. The performance analysis of BICM-ID and complex N-dimensional signal space diversity is carried out to study its performance limitation, the choice of the rotation matrix and the design of a low-complexity receiver. Based on the design criterion obtained from a tight error bound, the optimality of the rotation matrix is established. It is shown that using the class of optimal rotation matrices, the performance of BICM-ID systems over a frequency non-selective Rayleigh fading channel approaches that of the BICM-ID systems over an additive white Gaussian noise (AWGN) channel when the dimension of the signal constellation increases. Furthermore, by exploiting the sigma mapping for any M-ary quadrature amplitude modulation (QAM) constellation, a very simple sub-optimal, yet effective iterative receiver structure suitable for signal constellations with large dimensions is proposed. Simulation results in various cases and conditions indicate that the proposed receiver can achieve the analytical performance bounds with low complexity. The application of BICM-ID with SSD is then extended to the case of cascaded Rayleigh fading, which is more suitable to model mobile-to-mobile communication channels. By deriving the error bound on the asymptotic performance, it is first illustrated that for a small modulation constellation, a cascaded Rayleigh fading causes a much more severe performance degradation than a conventional Rayleigh fading. However, BICM-ID employing SSD with a sufficiently large constellation can close the performance gap between the Rayleigh and cascaded Rayleigh fading channels, and their performance can closely approach that over an AWGN channel. In the next step, the use of SSD in BICM-ID over frequency selective Rayleigh fading channels employing a multi-carrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is studied. Under the assumption of correlated fading over subcarriers, a tight bound on the asymptotic error performance for the general case of applying SSD over all N subcarriers is derived and used to establish the best achievable asymptotic performance by SSD. It is then shown that precoding over subgroups of at least L subcarriers per group, where L is the number of channel taps, is sufficient to obtain this best asymptotic error performance, while significantly reducing the receiver complexity. The optimal joint subcarrier grouping and rotation matrix design is subsequently determined by solving the Vandermonde linear system. Illustrative examples show a good agreement between various analytical and simulation results. Further, by combining the ideas of multi-D mapping and subcarrier grouping, a novel power and bandwidth-efficient bit-interleaved coded modulation with OFDM and iterative decoding (BI-COFDM-ID) in which multi-D mapping is performed over a group of subcarriers for broadband transmission in a frequency selective fading environment is proposed. A tight bound on the asymptotic error performance is developed, which shows that subcarrier mapping and grouping have independent impacts on the overall error performance, and hence they can be independently optimized. Specifically, it is demonstrated that the optimal subcarrier mapping is similar to the optimal multi-D mapping for BICM-ID in frequency non-selective Rayleigh fading environment, whereas the optimal subcarrier grouping is the same with that of OFDM with SSD. Furthermore, analytical and simulation results show that the proposed system with the combined optimal subcarrier mapping and grouping can achieve the full channel diversity without using SSD and provide significant coding gains as compared to the previously studied BI-COFDM-ID with the same power, bandwidth and receiver complexity. Finally, the investigation is extended to the application of BICM-ID over a multiple-input multiple-output (MIMO) system equipped with multiple antennas at both the transmitter and the receiver to exploit both time and spatial diversities, where neither the transmitter nor the receiver knows the channel fading coefficients. The concentration is on the class of unitary constellation, due to its advantages in terms of both information-theoretic capacity and error probability. The tight error bound with respect to the asymptotic performance is also derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, by using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. Analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping

    A High-speed Reconfigurable Free Space Optical Communication System Utilizing Software Defined Radio Environment

    Get PDF
    Free space optical (FSO) communication allows for high-speed data transmissions while also being extremely cost-effective by using visible or infrared wavelengths to transmit and receive data wirelessly through the free space channel. However, FSO links are highly susceptible to the effects of the atmosphere, particularly turbulence, smoke, and fog. On the other hand, FSO itself does not provide enough flexibility to address the issue of such blockage and obstruction caused by objects and atmospheric conditions. This research investigates, proposes, and evaluates a software defined multiple input multiple output (MIMO) FSO system to ensure link availability and reliability under weather conditions as part of the last mile access in the 5th generation, 6th generation, and beyond. Software defined radio (SDR) technology is adopted in order to provide a certain degree of flexibility to the optical wireless communications system. The scope of this research focuses on the design, validation, implementation, and evaluation of a novel adaptive switching algorithm i.e., activating additional transmitters of a MIMO FSO system using a software defined ecosystem. The main issues are the compactness of the experimental design; the limitation of software-oriented signal generation; robustness; reliability; and the quality of service. As part of the system design, the thresholding method, a decision-making process via the feedback link, and a spatial diversity technique is adopted to carry out the adaptive switching. The adaptive switching is performed via a feedback link in which the atmospheric loss and scintillation index are calculated for fog and turbulence respectively. The initial design is implemented in SDR/ GNURadio for a real-time emulation of the proposed system to enhance the system flexibility of a traditional MIMO FSO system. A bit-by-bit comparison is performed with the GNURadio signal processing block and BERT for a real-time BER estimation. However, based on the initial results, the switching mechanism can only overcome the effect of turbulence at a certain level. A new design to mainly mitigate the varying fog conditions is proposed based on the SDR-based adaptive switching for a gigabit ethernet (GbE) MIMO FSO system and tested in a 5 m dedicated atmospheric chamber. The proposed system is implemented using off-the-shelf components such as a media converter, small form pluggable transceivers, optical switch, and power meter to estimate the channel state information. A new Schmitt trigger-based thresholding method is also introduced. The proposed software defined GbE MIMO FSO with an adaptive switching algorithm is fabricated, implemented, and investigated. The results are also compared with the real-time simulated data. Since the purpose of this Ph.D. is to explain and demonstrate the proof of concept for the proposed SDR-MIMO FSO system, the emphasis has been on the design, evaluation, and minimal performance requirements rather than maximizing the data rate. The outcome of the thesis will be a huge degree of flexibility and mitigation property MIMO FSO can offer with the help of SDR. It will be shown that the designed system has the capability to provide data transmission with 99.999% availability with a packet error rate and data rate of 7.2 ×10−2 and ~120 Mbps respectively, under extremely harsh fog conditions with visibility V of < 11 m

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore