15,795 research outputs found

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Efficient Decoding Algorithms for the Compute-and-Forward Strategy

    Full text link
    We address in this paper decoding aspects of the Compute-and-Forward (CF) physical-layer network coding strategy. It is known that the original decoder for the CF is asymptotically optimal. However, its performance gap to optimal decoders in practical settings are still not known. In this work, we develop and assess the performance of novel decoding algorithms for the CF operating in the multiple access channel. For the fading channel, we analyze the ML decoder and develop a novel diophantine approximation-based decoding algorithm showed numerically to outperform the original CF decoder. For the Gaussian channel, we investigate the maximum a posteriori (MAP) decoder. We derive a novel MAP decoding metric and develop practical decoding algorithms proved numerically to outperform the original one

    Hardness of decoding quantum stabilizer codes

    Full text link
    In this article we address the computational hardness of optimally decoding a quantum stabilizer code. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be NP-complete, and a similar decoding problem for quantum codes is also known to be NP-complete. However, this decoding strategy is not optimal in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we show that optimal decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is #P

    Relaxation Bounds on the Minimum Pseudo-Weight of Linear Block Codes

    Full text link
    Just as the Hamming weight spectrum of a linear block code sheds light on the performance of a maximum likelihood decoder, the pseudo-weight spectrum provides insight into the performance of a linear programming decoder. Using properties of polyhedral cones, we find the pseudo-weight spectrum of some short codes. We also present two general lower bounds on the minimum pseudo-weight. The first bound is based on the column weight of the parity-check matrix. The second bound is computed by solving an optimization problem. In some cases, this bound is more tractable to compute than previously known bounds and thus can be applied to longer codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200
    • …
    corecore