21 research outputs found

    The probability of detecting and tracking RADAR targets in clutter at low grazing angles

    Get PDF
    Modern military acquisition and tracking RADARs are required to operate against aircraft and missiles specifically designed to have minimal radar cross section (RCS) and which fly at very low level to take maximum advantage of terrain screening. A model for predicting system performance is necessary for a range of terrain types in varying precipitation and seasonal cultural conditions. While the main degradation is from surface clutter and denial of sightline due to terrain and other local obstructions, several other factors such as multipath propagation, deliberate jamming and even operator performance contribute to the total model. The possibility that some radars may track obscured targets, however briefly, by using the diffraction path, is of particular interest. Although this report critically examines each of the contributory factors in order to select optimum values for inclusion in an overall computer prediction model; a new surface clutter model is specifically developed for sloped terrain using actual clutter measurements. The model is validated by comparison with an extensive survey of worldwide clutter results from both published and unpublished sources. Certain constraints have been necessary to restrict the study to a manageable size, while meeting the requirements of the sponsors. Attention is therefore focussed upon performance prediction for typical mobile tracking radar systems designed for operation against small RCS low level targets flying overland

    Electronic Warfare Receiver Resource Management and Optimization

    Get PDF
    Optimization of electronic warfare (EW) receiver scan strategies is critical to improving the probability of surviving military missions in hostile environments. The problem is that the limited understanding of how dynamic variations in radar and EW receiver characteristics has influenced the response time to detect enemy threats. The dependent variable was the EW receiver response time and the 4 independent variables were EW receiver revisit interval, EW receiver dwell time, radar scan time, and radar illumination time. Previous researchers have not explained how dynamic variations of independent variables affected response time. The purpose of this experimental study was to develop a model to understand how dynamic variations of the independent variables influenced response time. Queuing theory provided the theoretical foundation for the study using Little\u27s formula to determine the ideal EW receiver revisit interval as it states the mathematical relationship among the variables. Findings from a simulation that produced 17,000 data points indicated that Little\u27s formula was valid for use in EW receivers. Findings also demonstrated that variation of the independent variables had a small but statistically significant effect on the average response time. The most significant finding was the sensitivity in the variance of response time given minor differences of the test conditions, which can lead to unexpectedly long response times. Military users and designers of EW systems benefit most from this study by optimizing system response time, thus improving survivability. Additionally, this research demonstrated a method that may improve EW product development times and reduce the cost to taxpayers through more efficient test and evaluation techniques

    Electronic warfare self-protection of battlefield helicopters : a holistic view

    Get PDF
    The dissertation seeks to increase understanding of electronic warfare (EW) self-protection (EWSP) of battlefield helicopters by taking a holistic (systems) view on EWSP. It also evaluates the methodologies used in the research and their suitability as descriptive tools in communication between various EWSP stakeholders. The interpretation of the term "holistic view" is a central theme to the dissertation. The research methodology is bottom-up – which is necessary since no previous work exists that could guide the study – and progresses from analysis to synthesis. Initially several methods are evaluated for presenting findings on EWSP, including high-level system simulation such as Forrester system dynamics (FSD). The analysis is conducted by a comprehensive literature review on EW and other areas that are believed to be of importance to the holistic view. Combat scenarios, intelligence, EW support, validation, training, and delays have major influence on the effectiveness of the EWSP suite; while the initial procurement decision on the EWSP suite sets limits to what can be achieved later. The need for a vast support structure for EWSP means that countries with limited intelligence and other resources become dependent on allies for support; that is, the question of EWSP effectiveness becomes political. The synthesis shows that a holistic view on EWSP of battlefield helicopters cannot be bounded in the temporal or hierarchical (organizational) senses. FSD is found to be helpful as a quality assurance tool, but refinements are needed if FSD is to be useful as a general discussion tool. The area of survivability is found to be the best match for the holistic view – for an EWSP suprasystem. A global survivability paradigm is defined as the ultimate holistic view on EWSP. It is suggested that future research should be top-down and aiming at promoting the global survivability paradigm. The survivability paradigm would give EWSP a natural framework in which its merits can be assessed objectively.reviewe

    Performance factors for airborne short-dwell squinted radar sensors

    Get PDF
    Millimetre-wave radar in a missile seeker for the engagement of ground targets allows all-weather, day and night, surface imaging and has the ability to detect, classify and geolocate objects at long ranges. The use of a seeker allows intelligent target selection and removes inaccuracies in the target position. The selection of the correct target against a cluttered background in radar imagery is a challenging problem, which is further constrained by the seeker’s hardware and flight-path. This thesis examines how to make better use of the components of radar imagery that support target selection. Image formation for a squinted radar seeker is described, followed by an approach to automatic target recognition. Size and shape information is considered using a model-matching approach that is not reliant on extensive databases of templates, but a limited set of shape-only templates to reject clutter objects. The effects of radar sensitivity on size measurements are then explored to understand seeker operation in poor weather. Size measures cannot easily be used for moving targets, where the target signature is distorted and displaced. The ability to detect, segment and measure vehicle dimensions and velocity from the shadows of moving targets is tested using real and simulated data. The choice of polarisation can affect the quality of measurements and the ability to reject clutter. Data from three different radars is examined to help to understand the performance using linear and circular polarisations. For sensors operating at shorter ranges, the application of elevation monopulse to include target height as a discriminant is tested, showing good potential on simulated data. The combination of these studies offers an insight into the performance factors that influence the design and processing of a radar seeker. The use of shadow imagery on short-dwell radar seeker imagery is an area offering particular promise

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    COMBAT SYSTEMS Volume 1. Sensor Elements Part I. Sensor Functional Characteristics

    Get PDF
    This document includes: CHAPTER 1. SIGNATURES, OBSERVABLES, & PROPAGATORS. CHAPTER 2. PROPAGATION OF ELECTROMAGNETIC RADIATION. I. – FUNDAMENTAL EFFECTS. CHAPTER 3. PROPAGATION OF ELECTROMAGNETIC RADIATION. II. – WEATHER EFFECTS. CHAPTER 4. PROPAGATION OF ELECTROMAGNETIC RADIATION. III. – REFRACTIVE EFFECTS. CHAPTER 5. PROPAGATION OF ELECTROMAGNETIC RADIATION IV. – OTHER ATMOSPHERIC AND UNDERWATER EFFECTS. CHAPTER 6. PROPAGATION OF ACOUSTIC RADIATION. CHAPTER 7. NUCLEAR RADIATION: ITS ORIGIN AND PROPAGATION. CHAPTER 8. RADIOMETRY, PHOTOMETRY, & RADIOMETRIC ANALYSIS. CHAPTER 9. SENSOR FUNCTIONS. CHAPTER 10. SEARCH. CHAPTER 11. DETECTION. CHAPTER 12. ESTIMATION. CHAPTER 13. MODULATION AND DEMODULATION. CHAPTER 14. IMAGING AND IMAGE-BASED PERCEPTION. CHAPTER 15. TRACKING. APPENDIX A. UNITS, PHYSICAL CONSTANTS, AND USEFUL CONVERSION FACTORS. APPENDIX B. FINITE DIFFERENCE AND FINITE ELEMENT TECHNIQUES. APPENDIX C. PROBABILITY AND STATISTICS. INDEX TO VOLUME 1. Note by author: Note: Boldface entries in the table of contents are not yet completed

    Small unmanned aerial system (SUAS) flight and mission control support system (FMCSS) design

    Get PDF
    Unmanned Aerial Systems (UAS) are playing a significant role in the Global War on Terrorism (GWOT). Until recently, small UAS (SUAS) were an insignificant part of these efforts. Now their numbers exceed those of their larger counterparts by an order of magnitude. Future projections anticipate a growing demand for SUAS making now the best time to examine the functions they perform in order to make better decisions concerning their future design and development. This thesis provides a brief history of UAS and discusses the current capabilities and mission areas in which they perform. Their relevance to modern warfare and assumptions concerning their future roles on the battlefield is presented. Predominant UAS missions are identified, as well as the technical requirements deemed necessary for their success. A generic UAS functional model is developed to illustrate where the challenges and technology gaps manifest in SUAS design. Possible technology solutions that could fill these gaps are presented and a field experiment is conducted to demonstrate the feasibility of several possible solutions. The goal of this thesis is to identify existing technology gaps and offer technology solutions that lead to better design of future SUAS flight and mission control support systems (FMCSS).http://archive.org/details/smallunmannederi109452574Approved for public release; distribution is unlimited
    corecore