516 research outputs found

    The extremal genus embedding of graphs

    Full text link
    Let Wn be a wheel graph with n spokes. How does the genus change if adding a degree-3 vertex v, which is not in V (Wn), to the graph Wn? In this paper, through the joint-tree model we obtain that the genus of Wn+v equals 0 if the three neighbors of v are in the same face boundary of P(Wn); otherwise, {\deg}(Wn + v) = 1, where P(Wn) is the unique planar embedding of Wn. In addition, via the independent set, we provide a lower bound on the maximum genus of graphs, which may be better than both the result of D. Li & Y. Liu and the result of Z. Ouyang etc: in Europ. J. Combinatorics. Furthermore, we obtain a relation between the independence number and the maximum genus of graphs, and provide an algorithm to obtain the lower bound on the number of the distinct maximum genus embedding of the complete graph Km, which, in some sense, improves the result of Y. Caro and S. Stahl respectively

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Maximum and minimum toughness of graphs of small genus

    Get PDF
    AbstractA new lower bound on the toughness t(G) of a graph G in terms of its connectivity ϰ(G) and genus γ(G) is obtained. For γ > 0, the bound is sharp via an infinite class of extremal graphs all of girth 4. For planar graphs, the bound is t(G) > ϰ(G)/2 − 1. For ϰ = 1 this bound is not sharp, but for each ϰ = 3, 4, 5 and any ϵ > 0, infinite families of graphs {G(ϰ, ϵ)} are provided with ϰ(G(ϰ, ϵ)) = ϰ, but t(G(ϰ, ϵ)) < ϰ/2 − 1 + ϵ.Analogous investigations on the torus are carried out, and finally the question of upper bounds is discussed. Several unanswered questions are posed

    Vertex Splitting and Upper Embeddable Graphs

    Full text link
    The weak minor G of a graph G is the graph obtained from G by a sequence of edge-contraction operations on G. A weak-minor-closed family of upper embeddable graphs is a set G of upper embeddable graphs that for each graph G in G, every weak minor of G is also in G. Up to now, there are few results providing the necessary and sufficient conditions for characterizing upper embeddability of graphs. In this paper, we studied the relation between the vertex splitting operation and the upper embeddability of graphs; provided not only a necessary and sufficient condition for characterizing upper embeddability of graphs, but also a way to construct weak-minor-closed family of upper embeddable graphs from the bouquet of circles; extended a result in J: Graph Theory obtained by L. Nebesk{\P}y. In addition, the algorithm complex of determining the upper embeddability of a graph can be reduced much by the results obtained in this paper
    • …
    corecore