45 research outputs found

    Surrogate - Assisted Optimisation -Based Verification & Validation

    Get PDF
    This thesis deals with the application of optimisation based Validation and Verification (V&V) analysis on aerospace vehicles in order to determine their worst case performance metrics. To this end, three aerospace models relating to satellite and launcher vehicles provided by European Space Agency (ESA) on various projects are utilised. As a means to quicken the process of optimisation based V&V analysis, surrogate models are developed using polynomial chaos method. Surro- gate models provide a quick way to ascertain the worst case directions as computation time required for evaluating them is very small. A sin- gle evaluation of a surrogate model takes less than a second. Another contribution of this thesis is the evaluation of operational safety margin metric with the help of surrogate models. Operational safety margin is a metric defined in the uncertain parameter space and is related to the distance between the nominal parameter value and the first instance of performance criteria violation. This metric can help to gauge the robustness of the controller but requires the evaluation of the model in the constraint function and hence could be computationally intensive. As surrogate models are computationally very cheap, they are utilised to rapidly compute the operational safety margin metric. But this metric focuses only on finding a safe region around the nominal parameter value and the possibility of other disjoint safe regions are not explored. In order to find other safe or failure regions in the param- eter space, the method of Bernstein expansion method is utilised on surrogate polynomial models to help characterise the uncertain param- eter space into safe and failure regions. Furthermore, Binomial failure analysis is used to assign failure probabilities to failure regions which might help the designer to determine if a re-design of the controller is required or not. The methodologies of optimisation based V&V, surrogate modelling, operational safety margin, Bernstein expansion method and risk assessment have been combined together to form the WCAT-II MATLAB toolbox

    Long Time Propagation of Stochasticity by Dynamical Polynomial Chaos Expansions

    Get PDF
    Stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs) play an important role in many areas of engineering and applied sciences such as atmospheric sciences, mechanical and aerospace engineering, geosciences, and finance. Equilibrium statistics and long-time solutions of these equations are pertinent to many applications. Typically, these models contain several uncertain parameters which need to be propagated in order to facilitate uncertainty quantification and prediction. Correspondingly, in this thesis, we propose a generalization of the Polynomial Chaos (PC) framework for long-time solutions of SDEs and SPDEs driven by Brownian motion forcing. Polynomial chaos expansions (PCEs) allow us to propagate uncertainties in the coefficients of these equations to the statistics of their solutions. Their main advantages are: (i) they replace stochastic equations by systems of deterministic equations; and (ii) they provide fast convergence. Their main challenge is that the computational cost becomes prohibitive when the dimension of the parameters modeling the stochasticity is even moderately large. In particular, for equations with Brownian motion forcing, the long-time simulation by PC-based methods is notoriously difficult as the dimension of stochastic variables increases with time. With the goal in mind to deliver computationally efficient numerical algorithms for stochastic equations in the long time, our main strategy is to leverage the intrinsic sparsity in the dynamics by identifying the influential random parameters and construct spectral approximations to the solutions in terms of those relevant variables. Once this strategy is employed dynamically in time, using online constructions, approximations can retain their sparsity and accuracy; even for long times. To this end, exploiting Markov property of Brownian motion, we present a restart procedure that allows PCEs to expand the solutions at future times in terms of orthogonal polynomials of the measure describing the solution at a given time and the future Brownian motion. In case of SPDEs, the Karhunen-Loeve expansion (KLE) is applied at each restart to select the influential variables and keep the dimensionality minimal. Using frequent restarts and low degree polynomials, the algorithms are able to capture long-time solutions accurately. We will also introduce, using the same principles, a similar algorithm based on a stochastic collocation method for the solutions of SDEs. We apply the methods to the numerical simulation of linear and nonlinear SDEs, and stochastic Burgers and Navier-Stokes equations with white noise forcing. Our methods also allow us to incorporate time-independent random coefficients such as a random viscosity. We propose several numerical simulations, and show that the algorithms compare favorably with standard Monte Carlo methods in terms of accuracy and computational times. To demonstrate the efficiency of the algorithms for long-time simulations, we compute invariant measures of the solutions when they exist

    New Algorithms for Uncertainty Quantification and Nonlinear Estimation of Stochastic Dynamical Systems

    Get PDF
    Recently there has been growing interest to characterize and reduce uncertainty in stochastic dynamical systems. This drive arises out of need to manage uncertainty in complex, high dimensional physical systems. Traditional techniques of uncertainty quantification (UQ) use local linearization of dynamics and assumes Gaussian probability evolution. But several difficulties arise when these UQ models are applied to real world problems, which, generally are nonlinear in nature. Hence, to improve performance, robust algorithms, which can work efficiently in a nonlinear non-Gaussian setting are desired. The main focus of this dissertation is to develop UQ algorithms for nonlinear systems, where uncertainty evolves in a non-Gaussian manner. The algorithms developed are then applied to state estimation of real-world systems. The first part of the dissertation focuses on using polynomial chaos (PC) for uncertainty propagation, and then achieving the estimation task by the use of higher order moment updates and Bayes rule. The second part mainly deals with Frobenius-Perron (FP) operator theory, how it can be used to propagate uncertainty in dynamical systems, and then using it to estimate states by the use of Bayesian update. Finally, a method to represent the process noise in a stochastic dynamical system using a nite term Karhunen-Loeve (KL) expansion is proposed. The uncertainty in the resulting approximated system is propagated using FP operator. The performance of the PC based estimation algorithms were compared with extended Kalman filter (EKF) and unscented Kalman filter (UKF), and the FP operator based techniques were compared with particle filters, when applied to a duffing oscillator system and hypersonic reentry of a vehicle in the atmosphere of Mars. It was found that the accuracy of the PC based estimators is higher than EKF or UKF and the FP operator based estimators were computationally superior to the particle filtering algorithms

    Classification Algorithms based on Generalized Polynomial Chaos

    Get PDF
    Classification is one of the most important tasks in process system engineering. Since most of the classification algorithms are generally based on mathematical models, they inseparably involve the quantification and propagation of model uncertainty onto the variables used for classification. Such uncertainty may originate from either a lack of knowledge of the underlying process or from the intrinsic time varying phenomena such as unmeasured disturbances and noise. Often, model uncertainty has been modeled in a probabilistic way and Monte Carlo (MC) type sampling methods have been the method of choice for quantifying the effects of uncertainty. However, MC methods may be computationally prohibitive especially for nonlinear complex systems and systems involving many variables. Alternatively, stochastic spectral methods such as the generalized polynomial chaos (gPC) expansion have emerged as a promising technique that can be used for uncertainty quantification and propagation. Such methods can approximate the stochastic variables by a truncated gPC series where the coefficients of these series can be calculated by Galerkin projection with the mathematical models describing the process. Following these steps, the gPC expansion based methods can converge much faster to a solution than MC type sampling based methods. Using the gPC based uncertainty quantification and propagation method, this current project focuses on the following three problems: (i) fault detection and diagnosis (FDD) in the presence of stochastic faults entering the system; (ii) simultaneous optimal tuning of a FDD algorithm and a feedback controller to enhance the detectability of faults while mitigating the closed loop process variability; (iii) classification of apoptotic cells versus normal cells using morphological features identified from a stochastic image segmentation algorithm in combination with machine learning techniques. The algorithms developed in this work are shown to be highly efficient in terms of computational time, improved fault diagnosis and accurate classification of apoptotic versus normal cells
    corecore