653 research outputs found

    Learning morphology with Morfette

    Get PDF
    Morfette is a modular, data-driven, probabilistic system which learns to perform joint morphological tagging and lemmatization from morphologically annotated corpora. The system is composed of two learning modules which are trained to predict morphological tags and lemmas using the Maximum Entropy classifier. The third module dynamically combines the predictions of the Maximum-Entropy models and outputs a probability distribution over tag-lemma pair sequences. The lemmatization module exploits the idea of recasting lemmatization as a classification task by using class labels which encode mappings from wordforms to lemmas. Experimental evaluation results and error analysis on three morphologically rich languages show that the system achieves high accuracy with no language-specific feature engineering or additional resources

    African language technology: the data-driven perspective

    Get PDF

    Methods for Amharic part-of-speech tagging

    Get PDF
    The paper describes a set of experiments involving the application of three state-of- the-art part-of-speech taggers to Ethiopian Amharic, using three different tagsets. The taggers showed worse performance than previously reported results for Eng- lish, in particular having problems with unknown words. The best results were obtained using a Maximum Entropy ap- proach, while HMM-based and SVM- based taggers got comparable results

    A free/open-source hybrid morphological disambiguation tool for Kazakh

    Get PDF
    This paper presents the results of developing a morphological disambiguation tool for Kazakh. Starting with a previously developed rule-based approach, we tried to cope with the complex morphology of Kazakh by breaking up lexical forms across their derivational boundaries into inflectional groups and modeling their behavior with statistical methods. A hybrid rule-based/statistical approach appears to benefit morphological disambiguation demonstrating a per-token accuracy of 91% in running text

    Using a morphological analyzer in high precision POS tagging of Hungarian

    Get PDF
    The paper presents an evaluation of maxent POS disambiguation systems that incorporate an open source morphological analyzer to constrain the probabilistic models. The experiments show that the best proposed architecture, which is the first application of the maximum entropy framework in a Hungarian NLP task, outperforms comparable state of the art tagging methods and is able to handle out of vocabulary items robustly, allowing for efficient analysis of large (web-based) corpora. 1

    Towards a machine-learning architecture for lexical functional grammar parsing

    Get PDF
    Data-driven grammar induction aims at producing wide-coverage grammars of human languages. Initial efforts in this field produced relatively shallow linguistic representations such as phrase-structure trees, which only encode constituent structure. Recent work on inducing deep grammars from treebanks addresses this shortcoming by also recovering non-local dependencies and grammatical relations. My aim is to investigate the issues arising when adapting an existing Lexical Functional Grammar (LFG) induction method to a new language and treebank, and find solutions which will generalize robustly across multiple languages. The research hypothesis is that by exploiting machine-learning algorithms to learn morphological features, lemmatization classes and grammatical functions from treebanks we can reduce the amount of manual specification and improve robustness, accuracy and domain- and language -independence for LFG parsing systems. Function labels can often be relatively straightforwardly mapped to LFG grammatical functions. Learning them reliably permits grammar induction to depend less on language-specific LFG annotation rules. I therefore propose ways to improve acquisition of function labels from treebanks and translate those improvements into better-quality f-structure parsing. In a lexicalized grammatical formalism such as LFG a large amount of syntactically relevant information comes from lexical entries. It is, therefore, important to be able to perform morphological analysis in an accurate and robust way for morphologically rich languages. I propose a fully data-driven supervised method to simultaneously lemmatize and morphologically analyze text and obtain competitive or improved results on a range of typologically diverse languages
    corecore