4,208 research outputs found

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    Contrast Enhancement of Brightness-Distorted Images by Improved Adaptive Gamma Correction

    Full text link
    As an efficient image contrast enhancement (CE) tool, adaptive gamma correction (AGC) was previously proposed by relating gamma parameter with cumulative distribution function (CDF) of the pixel gray levels within an image. ACG deals well with most dimmed images, but fails for globally bright images and the dimmed images with local bright regions. Such two categories of brightness-distorted images are universal in real scenarios, such as improper exposure and white object regions. In order to attenuate such deficiencies, here we propose an improved AGC algorithm. The novel strategy of negative images is used to realize CE of the bright images, and the gamma correction modulated by truncated CDF is employed to enhance the dimmed ones. As such, local over-enhancement and structure distortion can be alleviated. Both qualitative and quantitative experimental results show that our proposed method yields consistently good CE results

    Localizing the Latent Structure Canonical Uncertainty: Entropy Profiles for Hidden Markov Models

    Get PDF
    This report addresses state inference for hidden Markov models. These models rely on unobserved states, which often have a meaningful interpretation. This makes it necessary to develop diagnostic tools for quantification of state uncertainty. The entropy of the state sequence that explains an observed sequence for a given hidden Markov chain model can be considered as the canonical measure of state sequence uncertainty. This canonical measure of state sequence uncertainty is not reflected by the classic multivariate state profiles computed by the smoothing algorithm, which summarizes the possible state sequences. Here, we introduce a new type of profiles which have the following properties: (i) these profiles of conditional entropies are a decomposition of the canonical measure of state sequence uncertainty along the sequence and makes it possible to localize this uncertainty, (ii) these profiles are univariate and thus remain easily interpretable on tree structures. We show how to extend the smoothing algorithms for hidden Markov chain and tree models to compute these entropy profiles efficiently.Comment: Submitted to Journal of Machine Learning Research; No RR-7896 (2012
    • …
    corecore