189 research outputs found

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201

    Fast Parallel Fixed-Parameter Algorithms via Color Coding

    Get PDF
    Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are inherently \emph{sequential} and, thus, make no use of the parallel hardware present in modern computers. We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized problems from the literature -- including vertex cover, packing problems, cluster editing, cutting vertices, finding embeddings, or finding matchings -- but that there are parallel algorithms working in \emph{constant} time or at least in time \emph{depending only on the parameter} (and not on the size of the input) for these problems. Phrased in terms of complexity classes, we place numerous natural parameterized problems in parameterized versions of AC0^0. On a more technical level, we show how the \emph{color coding} method can be implemented in constant time and apply it to embedding problems for graphs of bounded tree-width or tree-depth and to model checking first-order formulas in graphs of bounded degree

    Algorithmic and Hardness Results for the Colorful Components Problems

    Full text link
    In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph GG such that in the resulting graph GG' all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want GG' to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP NP-hard (assuming PNPP \neq NP). Then, we show that the second problem is APX APX-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP NP-hard. Finally, we show that the third problem does not admit polynomial time approximation within a factor of V1/14ϵ|V|^{1/14 - \epsilon} for any ϵ>0\epsilon > 0, assuming PNPP \neq NP (or within a factor of V1/2ϵ|V|^{1/2 - \epsilon}, assuming ZPPNPZPP \neq NP).Comment: 18 pages, 3 figure

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either n/k\left\lfloor n/k \right\rfloor or n/k\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    Interval scheduling and colorful independent sets

    Full text link
    Numerous applications in scheduling, such as resource allocation or steel manufacturing, can be modeled using the NP-hard Independent Set problem (given an undirected graph and an integer k, find a set of at least k pairwise non-adjacent vertices). Here, one encounters special graph classes like 2-union graphs (edge-wise unions of two interval graphs) and strip graphs (edge-wise unions of an interval graph and a cluster graph), on which Independent Set remains NP-hard but admits constant-ratio approximations in polynomial time. We study the parameterized complexity of Independent Set on 2-union graphs and on subclasses like strip graphs. Our investigations significantly benefit from a new structural "compactness" parameter of interval graphs and novel problem formulations using vertex-colored interval graphs. Our main contributions are: 1. We show a complexity dichotomy: restricted to graph classes closed under induced subgraphs and disjoint unions, Independent Set is polynomial-time solvable if both input interval graphs are cluster graphs, and is NP-hard otherwise. 2. We chart the possibilities and limits of effective polynomial-time preprocessing (also known as kernelization). 3. We extend Halld\'orsson and Karlsson (2006)'s fixed-parameter algorithm for Independent Set on strip graphs parameterized by the structural parameter "maximum number of live jobs" to show that the problem (also known as Job Interval Selection) is fixed-parameter tractable with respect to the parameter k and generalize their algorithm from strip graphs to 2-union graphs. Preliminary experiments with random data indicate that Job Interval Selection with up to fifteen jobs and 5*10^5 intervals can be solved optimally in less than five minutes.Comment: This revision does not contain Theorem 7 of the first revision, whose proof contained an erro

    Complexity of counting subgraphs: Only the boundedness of the vertex-cover number counts

    Get PDF
    For a class C of graphs, #Sub(C) is the counting problem that, given a graph H from C and an arbitrary graph G, asks for the number of subgraphs of G isomorphic to H. It is known that if C has bounded vertex-cover number (equivalently, the size of the maximum matching in C is bounded), then #Sub(C) is polynomial-time solvable. We complement this result with a corresponding lower bound: if C is any recursively enumerable class of graphs with unbounded vertex-cover number, then #Sub(C) is #W[1]-hard parameterized by the size of H and hence not polynomial-time solvable and not even fixed-parameter tractable, unless FPT is equal to #W[1]. As a first step of the proof, we show that counting k-matchings in bipartite graphs is #W[1]-hard. Recently, Curticapean [ICALP 2013] proved the #W[1]-hardness of counting k-matchings in general graphs, our result strengthens this statement to bipartite graphs with a considerably simpler proof and even shows that, assuming the Exponential Time Hypothesis (ETH), there is no f(k)∗no(k/log(k)) time algorithm for counting k-matchings in bipartite graphs for any computable function f. As a consequence, we obtain an independent and somewhat simpler proof of the classical result of Flum and Grohe [SICOMP 2004] stating that counting paths of length k is #W[1]-hard, as well as a similar almost-tight ETH-based lower bound on the exponent
    corecore