4,284 research outputs found

    Maximum Cliques in Graphs with Small Intersection Number and Random Intersection Graphs

    Full text link
    In this paper, we relate the problem of finding a maximum clique to the intersection number of the input graph (i.e. the minimum number of cliques needed to edge cover the graph). In particular, we consider the maximum clique problem for graphs with small intersection number and random intersection graphs (a model in which each one of mm labels is chosen independently with probability pp by each one of nn vertices, and there are edges between any vertices with overlaps in the labels chosen). We first present a simple algorithm which, on input GG finds a maximum clique in O(22m+O(m)+n2min{2m,n})O(2^{2^m + O(m)} + n^2 \min\{2^m, n\}) time steps, where mm is an upper bound on the intersection number and nn is the number of vertices. Consequently, when mlnlnnm \leq \ln{\ln{n}} the running time of this algorithm is polynomial. We then consider random instances of the random intersection graphs model as input graphs. As our main contribution, we prove that, when the number of labels is not too large (m=nα,0<α<1m=n^{\alpha}, 0< \alpha <1), we can use the label choices of the vertices to find a maximum clique in polynomial time whp. The proof of correctness for this algorithm relies on our Single Label Clique Theorem, which roughly states that whp a "large enough" clique cannot be formed by more than one label. This theorem generalizes and strengthens other related results in the state of the art, but also broadens the range of values considered. As an important consequence of our Single Label Clique Theorem, we prove that the problem of inferring the complete information of label choices for each vertex from the resulting random intersection graph (i.e. the \emph{label representation of the graph}) is \emph{solvable} whp. Finding efficient algorithms for constructing such a label representation is left as an interesting open problem for future research

    On String Graph Limits and the Structure of a Typical String Graph

    Full text link
    We study limits of convergent sequences of string graphs, that is, graphs with an intersection representation consisting of curves in the plane. We use these results to study the limiting behavior of a sequence of random string graphs. We also prove similar results for several related graph classes.Comment: 18 page
    corecore