5,138 research outputs found

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either ⌊n/k⌋\left\lfloor n/k \right\rfloor or ⌈n/k⌉\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Hitting and Harvesting Pumpkins

    Full text link
    The "c-pumpkin" is the graph with two vertices linked by c>0 parallel edges. A c-pumpkin-model in a graph G is a pair A,B of disjoint subsets of vertices of G, each inducing a connected subgraph of G, such that there are at least c edges in G between A and B. We focus on covering and packing c-pumpkin-models in a given graph: On the one hand, we provide an FPT algorithm running in time 2^O(k) n^O(1) deciding, for any fixed c>0, whether all c-pumpkin-models can be covered by at most k vertices. This generalizes known single-exponential FPT algorithms for Vertex Cover and Feedback Vertex Set, which correspond to the cases c=1,2 respectively. On the other hand, we present a O(log n)-approximation algorithm for both the problems of covering all c-pumpkin-models with a smallest number of vertices, and packing a maximum number of vertex-disjoint c-pumpkin-models.Comment: v2: several minor change

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    Fast Parallel Fixed-Parameter Algorithms via Color Coding

    Get PDF
    Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are inherently \emph{sequential} and, thus, make no use of the parallel hardware present in modern computers. We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized problems from the literature -- including vertex cover, packing problems, cluster editing, cutting vertices, finding embeddings, or finding matchings -- but that there are parallel algorithms working in \emph{constant} time or at least in time \emph{depending only on the parameter} (and not on the size of the input) for these problems. Phrased in terms of complexity classes, we place numerous natural parameterized problems in parameterized versions of AC0^0. On a more technical level, we show how the \emph{color coding} method can be implemented in constant time and apply it to embedding problems for graphs of bounded tree-width or tree-depth and to model checking first-order formulas in graphs of bounded degree

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and Ï”>0\epsilon > 0, the algorithm outputs in O(mlog⁥4n/Ï”2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+Ï”)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2log⁥2(m)/Ï”2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+Ï”)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm
    • 

    corecore