683 research outputs found

    The Geometric Maximum Traveling Salesman Problem

    Full text link
    We consider the traveling salesman problem when the cities are points in R^d for some fixed d and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of maximum length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time O(n^{f-2} log n), where f is the number of facets of the polyhedron determining the polyhedral norm. Thus for example we have O(n^2 log n) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a minimum length tour in each case is NP-hard. Our approach can be extended to the more general case of quasi-norms with not necessarily symmetric unit ball, where we get a complexity of O(n^{2f-2} log n). For the special case of two-dimensional metrics with f=4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with O(n) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Omega(n \log n) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms. Complementing the results on simplicity for polyhedral norms, we prove that for the case of Euclidean distances in R^d for d>2, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.Comment: 24 pages, 6 figures; revised to appear in Journal of the ACM. (clarified some minor points, fixed typos

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP{\cal NP}-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP{\cal P}={\cal NP} when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task.Comment: Accepted and to appear in ISAAC 2018, Yi-Lan, Taiwa

    Adaptive Mantel Test for AssociationTesting in Imaging Genetics Data

    Full text link
    Mantel's test (MT) for association is conducted by testing the linear relationship of similarity of all pairs of subjects between two observational domains. Motivated by applications to neuroimaging and genetics data, and following the succes of shrinkage and kernel methods for prediction with high-dimensional data, we here introduce the adaptive Mantel test as an extension of the MT. By utilizing kernels and penalized similarity measures, the adaptive Mantel test is able to achieve higher statistical power relative to the classical MT in many settings. Furthermore, the adaptive Mantel test is designed to simultaneously test over multiple similarity measures such that the correct type I error rate under the null hypothesis is maintained without the need to directly adjust the significance threshold for multiple testing. The performance of the adaptive Mantel test is evaluated on simulated data, and is used to investigate associations between genetics markers related to Alzheimer's Disease and heatlhy brain physiology with data from a working memory study of 350 college students from Beijing Normal University

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation

    Budgeted Matroid Maximization: a Parameterized Viewpoint

    Full text link
    We study budgeted variants of well known maximization problems with multiple matroid constraints. Given an ℓ\ell-matchoid \cm on a ground set EE, a profit function p:E→R≥0p:E \rightarrow \mathbb{R}_{\geq 0}, a cost function c:E→R≥0c:E \rightarrow \mathbb{R}_{\geq 0}, and a budget B∈R≥0B \in \mathbb{R}_{\geq 0}, the goal is to find in the ℓ\ell-matchoid a feasible set SS of maximum profit p(S)p(S) subject to the budget constraint, i.e., c(S)≤Bc(S) \leq B. The {\em budgeted ℓ\ell-matchoid} (BM) problem includes as special cases budgeted ℓ\ell-dimensional matching and budgeted ℓ\ell-matroid intersection. A strong motivation for studying BM from parameterized viewpoint comes from the APX-hardness of unbudgeted ℓ\ell-dimensional matching (i.e., B=∞B = \infty) already for ℓ=3\ell = 3. Nevertheless, while there are known FPT algorithms for the unbudgeted variants of the above problems, the {\em budgeted} variants are studied here for the first time through the lens of parameterized complexity. We show that BM parametrized by solution size is W[1]W[1]-hard, already with a degenerate single matroid constraint. Thus, an exact parameterized algorithm is unlikely to exist, motivating the study of {\em FPT-approximation schemes} (FPAS). Our main result is an FPAS for BM (implying an FPAS for ℓ\ell-dimensional matching and budgeted ℓ\ell-matroid intersection), relying on the notion of representative set −- a small cardinality subset of elements which preserves the optimum up to a small factor. We also give a lower bound on the minimum possible size of a representative set which can be computed in polynomial time
    • …
    corecore