22,080 research outputs found

    Maximum Independent Set when excluding an induced minor: K1+tK2K_1 + tK_2 and tC3C4tC_3 \uplus C_4

    Full text link
    Dallard, Milani\v{c}, and \v{S}torgel [arXiv '22] ask if for every class excluding a fixed planar graph HH as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when HH is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when HH is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the tt-vertex cycle, CtC_t [Gartland et al., STOC '21] and the disjoint union of tt triangles, tC3tC_3 [Bonamy et al., SODA '23]. We give, for every integer tt, a polynomial-time algorithm running in nO(t5)n^{O(t^5)} when HH is the friendship graph K1+tK2K_1 + tK_2 (tt disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in nO(t2logn)+tO(1)n^{O(t^2 \log n)+t^{O(1)}} when HH is tC3C4tC_3 \uplus C_4 (the disjoint union of tt triangles and a 4-vertex cycle). The former extends a classical result on graphs excluding tK2tK_2 as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.'s result.Comment: 15 pages, 2 figure

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Approximating Connected Maximum Cuts via Local Search

    Get PDF
    The Connected Max Cut (CMC) problem takes in an undirected graph G(V,E) and finds a subset S ? V such that the induced subgraph G[S] is connected and the number of edges connecting vertices in S to vertices in V?S is maximized. This problem is closely related to the Max Leaf Degree (MLD) problem. The input to the MLD problem is an undirected graph G(V,E) and the goal is to find a subtree of G that maximizes the degree (in G) of its leaves. [Gandhi et al. 2018] observed that an ?-approximation for the MLD problem induces an ?(?)-approximation for the CMC problem. We present an ?(log log |V|)-approximation algorithm for the MLD problem via local search. This implies an ?(log log |V|)-approximation algorithm for the CMC problem. Thus, improving (exponentially) the best known ?(log |V|) approximation of the Connected Max Cut problem [Hajiaghayi et al. 2015]

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1
    corecore