72 research outputs found

    Unmanned Aerial Vehicle for Internet of Everything: Opportunities and Challenges

    Get PDF
    The recent advances in information and communication technology (ICT) have further extended Internet of Things (IoT) from the sole "things" aspect to the omnipotent role of "intelligent connection of things". Meanwhile, the concept of internet of everything (IoE) is presented as such an omnipotent extension of IoT. However, the IoE realization meets critical challenges including the restricted network coverage and the limited resource of existing network technologies. Recently, Unmanned Aerial Vehicles (UAVs) have attracted significant attentions attributed to their high mobility, low cost, and flexible deployment. Thus, UAVs may potentially overcome the challenges of IoE. This article presents a comprehensive survey on opportunities and challenges of UAV-enabled IoE. We first present three critical expectations of IoE: 1) scalability requiring a scalable network architecture with ubiquitous coverage, 2) intelligence requiring a global computing plane enabling intelligent things, 3) diversity requiring provisions of diverse applications. Thereafter, we review the enabling technologies to achieve these expectations and discuss four intrinsic constraints of IoE (i.e., coverage constraint, battery constraint, computing constraint, and security issues). We then present an overview of UAVs. We next discuss the opportunities brought by UAV to IoE. Additionally, we introduce a UAV-enabled IoE (Ue-IoE) solution by exploiting UAVs's mobility, in which we show that Ue-IoE can greatly enhance the scalability, intelligence and diversity of IoE. Finally, we outline the future directions in Ue-IoE.Comment: 21 pages, 9 figure

    Resource Allocation and Positioning of Power-Autonomous Portable Access Points

    Get PDF

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    LS-AODV: A ROUTING PROTOCOL BASED ON LIGHTWEIGHT CRYPTOGRAPHIC TECHNIQUES FOR A FANET OF NANO DRONES

    Get PDF
    With the battlespace rapidly shifting to the cyber domain, it is vital to have secure, robust routing protocols for unmanned systems. Furthermore, the development of nano drones is gaining traction, providing new covert capabilities for operators at sea or on land. Deploying a flying ad hoc network (FANET) of nano drones on the battlefield comes with specific performance and security issues. This thesis provides a novel approach to address the performance and security concerns faced by FANET routing protocols, and, in our case, is specifically tailored to improve the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. The proposed routing protocol, Lightweight Secure Ad Hoc On-Demand Distance Vector (LS-AODV), uses a lightweight stream cipher, Trivium, to encrypt routing control packets, providing confidentiality. The scheme also uses Chaskey-12-based message authentication codes (MACs) to guarantee the authenticity and integrity of control packets. We use a network simulator, NS-3, to compare LS-AODV against two benchmark routing protocols, AODV and the Optimized Link State Routing (OLSR) protocol, in order to gauge network performance and security benefits. The simulation results indicate that when the FANET is not under attack from black-hole nodes, LS-AODV generally outperforms OLSR but performs slightly worse than AODV. On the other hand, LS-AODV emerges as the protocol of choice when a FANET is subject to a black-hole attack.ONROutstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    UAVs for Enhanced Communication and Computation

    Get PDF

    Efficient offloading and load distribution based on D2D relaying and UAVs for emergent wireless networks

    Get PDF
    The device to device (D2D) and unmanned aerial vehicle (UAV) communications are considered as enabling technologies of the emergent 5th generation of wireless and cellular system (5G). Consequently, it is important to determine their corresponding performance with respect to the 5G requirements. In particular, we focus on enhancing the offloading and load balancing performance in three directions. In the first direction, we study the achievable data rate of user relay assisting other users in two-tier networks. We propose a novel heuristic communication scheme called device-for-device (D4D). The D4D enables moving users to share their resource by taking advantage of cooperative communication. We study the moving user rate sensitivity to the relay selection and blocking probability. In the second direction, we study the offloading from macrocell to small cell and load balancing among small cell. Also, we design a new utility weight function that enables a balanced relay assignment. We propose a novel low complexity algorithm for centralized scheme maximizing the load among small cells as well as users subject to SINR threshold constraints. The simulations show that our proposed schemes achieve performance in load balancing compared to those obtained with the previous or traditional method. In the third direction, we study the 3D deployment of multiple UAVs for emergent on-demand offloading. We propose a novel on-demand deployment scheme based on maximizing both the operator’s profit and the quality of service. The proposed scheme is based on solving a non-convex problem by combining k-means clustering with pattern search to find the suboptimal location of UAVs. The simulation results show that our proposed scheme maximizes the operator’s profit and improves offloading traffic efficiency. Our global contribution was the development of a scheme to improve the quality of service and the performance in emergent networks through the improvement of the load distribution and resource sharing using D2D and UAV

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Link Scheduling in UAV-Aided Networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) or drones are a type of low altitude aerial mobile vehicles. They can be integrated into existing networks; e.g., cellular, Internet of Things (IoT) and satellite networks. Moreover, they can leverage existing cellular or Wi-Fi infrastructures to communicate with one another. A popular application of UAVs is to deploy them as mobile base stations and/or relays to assist terrestrial wireless communications. Another application is data collection, whereby they act as mobile sinks for wireless sensor networks or sensor devices operating in IoT networks. Advantageously, UAVs are cost-effective and they are able to establish line-of-sight links, which help improve data rate. A key concern, however, is that the uplink communications to a UAV may be limited, where it is only able to receive from one device at a time. Further, ground devices, such as those in IoT networks, may have limited energy, which limit their transmit power. To this end, there are three promising approaches to address these concerns, including (i) trajectory optimization, (ii) link scheduling, and (iii) equipping UAVs with a Successive Interference Cancellation (SIC) radio. Henceforth, this thesis considers data collection in UAV-aided, TDMA and SICequipped wireless networks. Its main aim is to develop novel link schedulers to schedule uplink communications to a SIC-capable UAV. In particular, it considers two types of networks: (i) one-tier UAV communications networks, where a SIC-enabled rotary-wing UAV collects data from multiple ground devices, and (ii) Space-Air-Ground Integrated Networks (SAGINs), where a SIC-enabled rotary-wing UAV offloads collected data from ground devices to a swarm of CubeSats. A CubeSat then downloads its data to a terrestrial gateway. Compared to one-tier UAV communications networks, SAGINs are able to provide wide coverage and seamless connectivity to ground devices in remote and/or sparsely populated areas
    • …
    corecore