362 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding

    Full text link
    In this paper, we propose a linear precoder for the downlink of a multi-user MIMO system with multiple users that potentially act as eavesdroppers. The proposed precoder is based on regularized channel inversion (RCI) with a regularization parameter α\alpha and power allocation vector chosen in such a way that the achievable secrecy sum-rate is maximized. We consider the worst-case scenario for the multi-user MIMO system, where the transmitter assumes users cooperate to eavesdrop on other users. We derive the achievable secrecy sum-rate and obtain the closed-form expression for the optimal regularization parameter αLS\alpha_{\mathrm{LS}} of the precoder using large-system analysis. We show that the RCI precoder with αLS\alpha_{\mathrm{LS}} outperforms several other linear precoding schemes, and it achieves a secrecy sum-rate that has same scaling factor as the sum-rate achieved by the optimum RCI precoder without secrecy requirements. We propose a power allocation algorithm to maximize the secrecy sum-rate for fixed α\alpha. We then extend our algorithm to maximize the secrecy sum-rate by jointly optimizing α\alpha and the power allocation vector. The jointly optimized precoder outperforms RCI with αLS\alpha_{\mathrm{LS}} and equal power allocation by up to 20 percent at practical values of the signal-to-noise ratio and for 4 users and 4 transmit antennas.Comment: IEEE Transactions on Communications, accepted for publicatio

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore