66 research outputs found

    An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification

    Get PDF
    A statistical approach to LiDAR derived topographic attributes for the automatic extraction of channel network and for the choice of the scale to apply for parameter evaluation is presented in this paper. The basis of this approach is to use distribution analysis and statistical descriptors to identify channels where terrain geometry denotes significant convergences. Two case study areas with different morphology and degree of organization are used with their 1 m LiDAR Digital Terrain Models (DTMs). Topographic attribute maps (curvature and openness) for various window sizes are derived from the DTMs in order to detect surface convergences. A statistical analysis on value distributions considering each window size is carried out for the choice of the optimum kernel. We propose a three-step method to extract the network based (a) on the normalization and overlapping of openness and minimum curvature to highlight the more likely surface convergences, (b) a weighting of the upslope area according to these normalized maps to identify drainage flow paths and flow accumulation consistent with terrain geometry, (c) the standard score normalization of the weighted upslope area and the use of standard score values as non subjective threshold for channel network identification. As a final step for optimal definition and representation of the whole network, a noise-filtering and connection procedure is applied. The advantage of the proposed methodology, and the efficiency and accurate localization of extracted features are demonstrated using LiDAR data of two different areas and comparing both extractions with field surveyed networks

    Evaluation of empirical approaches to estimate the variability of erosive inputs in river catchments

    Get PDF
    Die Dissertation erforscht die Unsicherheit, Sensitivität und Grenzen großskaliger Erosionsmodelle. Die Modellierung basiert auf der allgemeinen Bodenabtragsgleichung (ABAG), Sedimenteintragsverhältnissen (SDR) und europäischen Daten. Für mehrere Regionen Europas wird die Bedeutung der Unsicherheit topographischer Modellparameter, ABAG-Faktoren und kritischer Schwebstofffrachten für die Anwendbarkeit empirischer Modelle zur Beschreibung von Sedimentfrachten und SDR von Flusseinzugsgebieten untersucht. Der Vergleich alternativer Modellparameter sowie Kalibrierungs- und Validierungsdaten zeigt, dass schon grundlegende Modellentscheidungen mit großen Unsicherheiten behaftet sind. Zur Vermeidung falscher Modellvorhersagen sind kalibrierte Modelle genau zu dokumentieren. Auch wenn die geschickte Wahl nicht-topographischer Algorithmen die Modellgüte regionaler Anwendungen verbessern kann, so gibt es nicht die generell beste Lösung. Die Ergebnisse zeigen auch, dass SDR-Modelle stets mit Sedimentfrachten und SDR kalibriert und evaluiert werden sollten. Mit diesem Ansatz werden eine neue europäische Bodenabtragskarte und ein verbessertes SDR-Modell für Einzugsgebiete nördlich der Alpen und in Südosteuropa abgeleitet. In anderen Regionen Europas ist das SDR-Modell bedingt nutzbar. Die Studien zur jährlichen Variabilität der Bodenerosion zeigen, dass jahreszeitlich gewichtete Niederschlagsdaten geeigneter als ungewichtete sind. Trotz zufriedenstellender Modellergebnisse überwinden weder sorgfältige Algorithmenwahl noch Modellverbesserungen die Grenzen europaweiter SDR-Modelle. Diese bestehen aus der Diskrepanz zwischen modellierten Bodenabtrags- und maßgeblich zur beobachteten bzw. kritischen Sedimentfracht beitragenden Prozessen sowie der außergewöhnlich hohen Sedimentmobilisierung durch Hochwässer. Die Integration von nicht von der ABAG beschriebenen Prozessen und von Starkregentagen sowie die Disaggregation kritischer Frachten sollte daher weiter erforscht werden.This dissertation thesis addresses the uncertainty, sensitivity and limitations of large-scale erosion models. The modelling framework consists of the universal soil loss equation (USLE), sediment delivery ratios (SDR) and European data. For several European regions, the relevance of the uncertainty in topographic model parameters, USLE factors and critical yields of suspended solids for the applicability of empirical models to predict sediment yields and SDR of river catchments is systematically evaluated. The comparison of alternative model parameters as well as calibration and validation data shows that even basic modelling decisions are associated with great uncertainties. Consequently, calibrated models have to be well-documented to avoid misapplication. Although careful choices of non-topographic algorithms can also be helpful to improve the model quality in regional applications, there is no definitive universal solution. The results also show that SDR models should always be calibrated and evaluated against sediment yields and SDR. With this approach, a new European soil loss map and an improved SDR model for river catchments north of the Alps and in Southeast Europe are derived. For other parts of Europe, the SDR model is of limited use. The studies on the annual variability of soil erosion reveal that seasonally weighted rainfall data is more appropriate than unweighted data. Despite satisfactory model results, neither the careful algorithm choice nor model improvements overcome the limitations of pan-European SDR models. These limitations are related to the mismatch of modelled soil loss processes and the relevant processes contributing to the observed or critical sediment load as well as the extraordinary sediment mobilisation during floods. Therefore, further research on integrating non-USLE processes and heavy-rainfall data as well as on disaggregating critical yields is needed

    An evidential reasoning geospatial approach to transport corridor susceptibility zonation

    Get PDF
    PhD ThesisGiven the increased hazards faced by transport corridors such as climate induced extreme weather, it is essential that local spatial hot-spots of potential landslide susceptibility can be recognised. Traditionally, geotechnical survey and monitoring approaches have been used to recognise spatially landslide susceptibility zones. The increased availability of affordable very high resolution remotely-sensed datasets, such as airborne laser scanning (ALS) and multispectral aerial imagery, along with improved geospatial digital map data-sets, potentially allows the automated recognition of vulnerable earthwork slopes. However, the challenge remains to develop the analytical framework that allows such data to be integrated in an objective manner to recognise slopes potentially susceptible to failure. In this research, an evidential reasoning multi-source geospatial integration approach for the broad-scale recognition and prediction of landslide susceptibility in transport corridors has been developed. Airborne laser scanning and Ordnance Survey DTM data is used to derive slope stability parameters (slope gradient, aspect, terrain wetness index (TWI), stream power index (SPI) and curvature), while Compact Airborne Spectrographic Imager (CASI) imagery, and existing national scale digital map data-sets are used to characterise the spatial variability of land cover, land use and soil type. A novel approach to characterisation of soil moisture distribution within transport corridors is developed that incorporates the effects of the catchment contribution to local zones of moisture concentration in earthworks. In this approach, the land cover and soil type of the wider catchment are used to estimate the spatial contribution of precipitation contributing to surface runoff, which in turn is used to parameterise a weighted terrain accumulation flow model. The derived topographic and land use properties of the transport corridor are integrated within the evidential reasoning approach to characterise numeric measures of belief, disbelief and uncertainty regarding slope instability spatially within the transport corridor. Evidential reasoning was employed as it offers the ability to derive an objective weighting of the relative importance of each derived property to the final estimation of landslide susceptibility, whilst allowing the uncertainty of the properties to be taken into account. The developed framework was applied to railway transport earthworks located near Haltwhistle in northern England, UK. This section of the Carlisle-Newcastle rail line has a ii history of instability with the occurrence of numerous minor landslides in recent years. Results on spatial distribution of soil moisture indicate considerable contribution of the surrounding wider catchment topography to the localised zones of moisture accumulation. The degrees of belief and disbelief indicated the importance of slope with gradients between 250 to 350 and concave curvature. Permeable soils with variable intercalations accounted for over 80% of slope instability with 5.1% of the earthwork cuttings identified as relatively unstable in contrast to 47.5% for the earthwork embankment. The developed approach was found to have a goodness of fit of 88.5% with respect to the failed slopes used to parametrise the evidential reasoning model and an overall predictive capability of 77.75% based on independent validation dataset.TETFUND Nigeria, Nasarawa State University and my family members for their financial support towards the completion of the PhD programme

    A New Geographic Process Data Model

    Get PDF
    Processes, although the subject matter of geography, have not been represented in a manner that aids their querying and analysis. This dissertation develops an appropriate data model that allows for such a process oriented representation, which is built upon a theory of process. The data model, called nen, focuses existing modeling approaches on representing and storing process information. The flux simulation framework was created utilizing the nen data model to represent processes; it extends the RePast agent based modeling environment. This simulator includes basic classes for developing a domain specific simulation and a set of query tools for inquiring after the results of a simulation. The methodology was then prototyped with a watershed runoff simulation

    Evaluating topographic wetness indices across central New York agricultural landscapes

    Get PDF

    ANALYSIS OF ACCURACY OF STREAMS AND WATERSHED DIVIDES CONTAINED IN THE GEOGRAPHIC DATABASES OF THE CZECH REPUBLIC

    Get PDF
    Analýza polohové přesnosti linií vodních toků a rozvodnic z geografických databází ČR Abstrakt Cílem práce je zhodnotit polohovou přesnost linií vodních toků a rozvodnic z geografických databází ČR. Data jsou porovnávána v několika geomorfologicky odlišných územích a je také zkoumán vliv výškové členitosti terénu na polohovou přesnost linií. V teoretické části práce jsou popsány metody vymezování linií vodních toků a rozvodnic a metody určené k porovnání polohové přesnosti linií. Dále je popsána metodika práce, která zahrnuje vymezení linií vodních toků a rozvodnic z DTM (digitální terénní model) pomocí nástroje ArcHydro a porovnání těchto linií s liniemi z dostupných databází. Data použitá k vytvoření DTM byla získána leteckým laserovým skenováním. Klíčová slova: rozvodnice, vodní tok, polohová přesnost, DTMAnalysis of Accuracy of Streams and Watershed Divides Contained in the Geographic Databases of the Czech Republic Abstract The aim of this work is to evaluate positional accuracy of stream lines and watersheds in geographical databases of the Czech Republic. Data are compared in several geomorphologically different areas and the influence of terrain topography on positional accuracy of lines is also studied. The teoretical part of this work describes methods of stream lines and watesheds delimitation and methods designed for comparision of positional accuracy of lines. Furthermore, methodology of work involving stream lines and watershed delimitation in DTM (digital terrain model) by ArcHydro Tools and comparision of these lines with the lines in available databases is described. The data used for construction of DTM were obtained by Airborne Laser Scanning. Key words: watershed, stream, position accuracy, DTMDepartment of Applied Geoinformatics and CartographyKatedra aplikované geoinformatiky a kartografieFaculty of SciencePřírodovědecká fakult

    A continental landscape framework for systematic conservation planning for Australian rivers and streams

    No full text
    Conservation of Australia’s distinctive river ecosystems has lagged behind that of terrestrial and marine environments despite mounting evidence of the destructive effects of human activities. There has been little nationally coordinated conservation activity. A systematic, continent-wide conservation planning approach would ensure limited conservation resources are allocated efficiently and decisions are accountable. This thesis addresses critical gaps in the spatial data required for systematic conservation planning. It describes the development of a stream network and nested catchment reference system to provide the spatial framework. This framework, at a map scale of approximately 1:250,000, supplies planning units for application of reserve design algorithms and determination of priorities for protective management as well as units for reporting conservation evaluation and assessment. The Pfafstetter coding of the catchment units identifies drainage network connectivities allowing them to be readily incorporated into conservation planning procedures. This thesis presents for the first time a comprehensive picture of continent-wide variation in the landscape factors that ultimately control riverine ecosystem patterns and processes. Stream segments, the section of the stream between tributary confluences and the smallest unit in the spatial framework, have been individually characterized and classified at multiple scales using attributes that describe the catchment (and/or sub-catchment) climate, water balance, geology, terrain and vegetation. Segments were clustered according to their similarity in environmental data space so that, unlike ecoregion classifications, groups may be geographically dispersed. The resulting River Environment Types have been found to differentiate significant variation in stream biota (macroinvertebrates and fish) and habitat characteristics. However, classification strength varies widely among types. It is hypothesised that this is due to both classification uncertainty and limitations of the test data. The spatial framework and classifications are the central elements of a continental landscape framework that could be used to support systematic conservation planning and assist the development of a national conservation plan for Australia’s rivers and streams. The framework could also provide the basis for an online information system to serve a broader range of NRM planning and management objectives. The utility of the continental framework has been demonstrated in a review of the National Reserve System (NRS). The review acknowledges some uncertainty in the results due to inaccuracies and limitations of the framework, but nevertheless, concludes that the NRS must be expanded if it is to achieve a comprehensive and adequate protected area system for river ecosystems. This study makes major contributions to spatial analysis methodology. It has developed and applied a new method of drainage analysis applicable to diverse drainage structures at continental scale and recommends enhancements to the internationally adopted Pfafstetter scheme. It also advances understanding of the role for landscape classification and the influence of classification choice on conservation planning outcomes. The development of the continental landscape framework for Australia presents a model and the necessary tools for conservation planning for the rivers and streams of other continents

    Surface hydrological modelling for rehabilitated landforms

    Get PDF

    Earth observation for water resource management in Africa

    Get PDF
    • …
    corecore