5,544 research outputs found

    Wireless network coding for multi-hop relay channels

    Get PDF
    Future wireless communication systems are required to meet growing demands for high spectral e�ciency, low energy consumption and high mobility. The advent of wireless network coding (WNC) has o�ered a new opportunity to improve network throughput and transmission reliability by exploiting interference in intermediate relays. Combined with network coding and self-information cancelation, WNC for two-way relay channels (TWRCs) has come to the forefront. This dissertation focuses on exploiting WNC in multi-hop two-way relay channels (MH-TRCs). Particularly, a multi-hop wireless network coding (MH-WNC) scheme is designed for the generalized L-node K-message MH-TRC. Theoretical studies on the network throughput and performance bounds achieved by the MH-WNC scheme with di�erent relaying strategies (i.e., amplify-and-forward (AF) and compute-and-forward (CPF)) are carried out. Furthermore, by introducing di�erent numbers of transmission time intervals into the MH-WNC, a multiple-time-interval (Multi-TI) MH-WNC is proposed to determine an optimal MH-WNC which can achieve the best outage performance for all-scale MH-TRCs. Finally, this study extends the research on WNC one step forward from two-user networks to multi-user networks. An extended CPF joint with a dominated solution for maximizing the overall computation rate is proposed for the multi-way relay channel (mRC) in the last chapter. The contributions of this dissertation are multifold. First, the proposed MHWNC scheme with fixed two transmission time intervals can achieve a significantly improved network throughput compared to the non-network coding (Non-NC) scheme in the generalized L-node K-message MH-TRC. Theoretical results are derived for both multi-hop analog network coding (MH-ANC) and multi-hop compute-and-forward (MH-CPF). Moreover, both theoretical and numerical results demonstrate that the two MH-WNC schemes can be applied to different scale MH-TRCs to achieve a better outage performance compared to the conventional Non-NC scheme (i.e., MH-ANC for the non-regenerative MH-TRC with a small number of nodes, and MH-CPF for the regenerative MH-TRC with a large number of nodes.). Furthermore, a Multi-TI MH-WNC scheme is generalized with a special binary-tree model and characteristic matrix. The determined optimal MH-WNC scheme is able to provide the best outage performance and outperform the Non-NC scheme in all scale MH-TRCs. Last but not least, this dissertation provides a preliminary investigation of WNC in mRCs. The proposed dominated solution for maximizing the overall computation rate can ensure that all the nodes in the mRC successfully recover their required messages. Moreover, the extended CPF strategy is proven superior to Non-NC in the mRC with a small number of users

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Distributed Optimal Rate-Reliability-Lifetime Tradeoff in Wireless Sensor Networks

    Full text link
    The transmission rate, delivery reliability and network lifetime are three fundamental but conflicting design objectives in energy-constrained wireless sensor networks. In this paper, we address the optimal rate-reliability-lifetime tradeoff with link capacity constraint, reliability constraint and energy constraint. By introducing the weight parameters, we combine the objectives at rate, reliability, and lifetime into a single objective to characterize the tradeoff among them. However, the optimization formulation of the rate-reliability-reliability tradeoff is neither separable nor convex. Through a series of transformations, a separable and convex problem is derived, and an efficient distributed Subgradient Dual Decomposition algorithm (SDD) is proposed. Numerical examples confirm its convergence. Also, numerical examples investigate the impact of weight parameters on the rate utility, reliability utility and network lifetime, which provide a guidance to properly set the value of weight parameters for a desired performance of WSNs according to the realistic application's requirements.Comment: 27 pages, 10 figure

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Throughput Optimal Flow Allocation on Multiple Paths for Random Access Wireless Multi-hop Networks

    Full text link
    In this paper we consider random access wireless multi-hop mesh networks with multi-packet reception capabilities where multiple flows are forwarded to the gateways through node disjoint paths. We address the issue of aggregate throughput-optimal flow rate allocation with bounded delay guarantees. We propose a distributed flow rate allocation scheme that formulates flow rate allocation as an optimization problem and derive the conditions for non-convexity for an illustrative topology. We also employ a simple model for the average aggregate throughput achieved by all flows that captures both intra- and inter-path interference. The proposed scheme is evaluated through NS-2 simulations. Our preliminary results are derived from a grid topology and show that the proposed flow allocation scheme slightly underestimates the average aggregate throughput observed in two simulated scenarios with two and three flows respectively. Moreover it achieves significantly higher average aggregate throughput than single path utilization in two different traffic scenarios examined.Comment: Accepted for publication at the 9th IEEE BROADBAND WIRELESS ACCESS WORKSHOP (BWA2013), IEEE Globecom 2013 Workshop
    • …
    corecore