112 research outputs found

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign

    Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks

    Get PDF
    Recent explosive growth in mobile data traffic is increasing energy consumption in cellular networks at an incredible rate. Moreover, as a direct result of the conventional static network provisioning approach, a significant amount of electrical energy is being wasted in the existing networks. Therefore, in recent time, the issue of designing energy efficient cellular networks has drawn significant attention, which is also the foremost motivation behind this research. The proposed research is particularly focused on the design of self-organizing type traffic-sensitive dynamic network reconfiguring mechanisms for energy efficiency in cellular systems. Under the proposed techniques, radio access networks (RANs) are adaptively reconfigured using less equipment leading to reduced energy utilization. Several energy efficient cellular network frameworks by employing inter-base station (BS) cooperation in RANs are proposed. Under these frameworks, based on the instantaneous traffic demand, BSs are dynamically switched between active and sleep modes by redistributing traffic among them and thus, energy savings is achieved. The focus is then extended to exploiting the availability of multiple cellular networks for extracting energy savings through inter-RAN cooperation. Mathematical models for both of these single-RAN and multi-RAN cooperation mechanisms are also formulated. An alternative energy saving technique using dynamic sectorization (DS) under which some of the sectors in the underutilized BSs are turned into sleep mode is also proposed. Algorithms for both the distributed and the centralized implementations are developed. Finally, a two-dimensional energy efficient network provisioning mechanism is proposed by jointly applying both the DS and the dynamic BS switching. Extensive simulations are carried out, which demonstrate the capability of the proposed mechanisms in substantially enhancing the energy efficiency of cellular networks

    Efficient energy management in ultra-dense wireless networks

    Get PDF
    The increase in demand for more network capacity has led to the evolution of wireless networks from being largely Heterogeneous (Het-Nets) to the now existing Ultra-dense (UDNs). In UDNs, small cells are densely deployed with the goal of shortening the physical distance between the base stations (BSs) and the UEs, so as to support more user equipment (UEs) at peak times while ensuring high data rates. Compared to Het-Nets, Ultra-dense networks (UDNs) have many advantages. These include, more network capacity, higher flexibility to routine configurations, and more suitability to achieve load-balancing, hence, fewer blind spots as well as lower call blocking probability. It should be noted that, in practice, due to the high density of deployed small cells in Ultra-Dense Networks, a number of issues, or rather concerns, come with this evolution from Het-Nets. Among these issues include problems with efficient radio resource management, user cell association, inter- and intra-cell interference management and, last but not least, efficient energy consumption. Some of these issues which impact the overall network efficiency are largely due to the use of obsolete algorithms, especially those whose resource allocation is based solely on received signal power (RSSP). In this paper, the focus is solely on the efficient energy management dilemma and how to optimally reduce the overall network energy consumption. Through an extensive literature review, a detailed report into the growing concern of efficient energy management in UDNs is provided in Chapter 2. The literature review report highlights the classification as well as the evolution of some of the Mobile Wireless Technologies and Mobile Wireless Networks in general. The literature review report provides reasons as to why the energy consumption issue has become a very serious concern in UltraDense networks as well as the various techniques and measures taken to mitigate this. It is shown that, due to the increasing Mobile Wireless Systems’ carbon footprint which carries serious negative environmental impact, and the general need to lower operating costs by the network operators, the management of energy consumption increases in priority. By using the architecture of a Fourth Generation Long Term Evolution (4G-LTE) UltraDense Network, the report further shows that more than 65% of the overall energy consumption is by the access network and base stations in particular. This phenomenon explains why most attention in energy efficiency management in UDNs is largely centred on reducing the energy consumption of the deployed base stations more than any other network components like the data servers or backhauling features used. Furthermore, the report also provides detailed information on the methods/techniques, their classification, implementation, as well as a critical analysis of the said implementations in literature. This study proposes a sub-optimal algorithm and Distributed Cell Resource Allocation with a Base Station On/Off scheme that aims at reducing the overall base station power consumption in UDNs, while ensuring that the overall Quality of Service (QoS) for each User Equipment (UE) as specified in its service class is met. The modeling of the system model used and hence formulation of the Network Energy Efficiency (NEE) optimization problem is done viii using stochastic geometry. The network model comprises both evolved Node B (eNB) type macro and small cells operating on different frequency bands as well as taking into account factors that impact NEE such as UE mobility, UE spatial distribution and small cells spatial distribution. The channel model takes into account signal interference from all base stations, path loss, fading, log normal shadowing, modulation and coding schemes used on each UE’s communication channels when computing throughout. The power consumption model used takes into account both static (site cooling, circuit power) and active (transmission or load based) base station power consumption. The formulation of the NEE optimization problem takes into consideration the user’s Quality-of-service (QoS), inter-cell interference, as well as each user’s spectral efficiency and coverage/success probability. The formulated NEE optimization problem is of type Nondeterministic Polynomial time (NP)-hard, due to the user-cell association. The proposed solution to the formulated optimization problem makes use of constraint relaxation to transform the NP-hard problem into a more solvable, convex and linear optimization one. This, combined with Lagrangian dual decomposition, is used to create a distributed solution. After cellassociation and resource allocation phases, the proposed solution in order to further reduce power consumption performs Cell On/Off. Then, by using the computer simulation tools/environments, the “Distributed Resource Allocation with Cell On/Off” scheme’s performance, in comparison to four other resource allocation schemes, is analysed and evaluated given a number of different network scenarios. Finally, the statistical and mathematical results generated through the simulations indicate that the proposed scheme is the closest in NEE performance to the Exhaustive Search algorithm, and hence superior to the other sub-optimal algorithms it is compared to

    Resource Allocation for Broadband Wireless Access Networks with Imperfect CSI

    Get PDF
    The high deployment and maintenance costs of last mile wireline networks (i.e., DSL and cable networks) have urged service providers to search for new cost-effective solutions to provide broadband connectivity. Broadband wireless access (BWA) networks, which offer a wide coverage area and high transmission rates in addition to their fast and low-cost deployment, have emerged as an alternative to last mile wireline networks. Therefore, BWA networks are expected to be deployed in areas with different terrain profiles (e.g., urban, suburban, rural) where wireless communication faces different channel impairments. This fact necessitates the adoption of various transmission technologies that combat the channel impairments of each profile. Implementation scenarios of BWA networks considered in this thesis are multicarrier-based direct transmission and single carrier-based cooperative transmission scenarios. The performance of these transmission technologies highly depends on how resources are allocated. In this thesis, we focus on the development of practical resource allocation schemes for the mentioned BWA networks implementation scenarios. In order to develop practical schemes, the imperfection of channel state information (CSI) and computational power limitations are among considered practical implementation issues. The design of efficient resource allocation schemes at the MAC layer heavily relies on the CSI reported from the PHY layer as a measure of the wireless channel condition. The channel estimation error and feedback delay renders the reported CSI erroneous. The inaccuracy in CSI propagates to higher layers, resulting in performance degradation. Although this effect is intuitive, a quantitative measure of this degradation is necessary for the design of practical resource allocation schemes. An approach to the evaluation of the ergodic mutual information that reflects this degradation is developed for single carrier, multicarrier, direct, and cooperative scenarios with inaccurate CSI. Given the CSI estimates and estimation error statistics, the presented evaluation of ergodic mutual information can be used in resource allocation and in assessing the severity of estimation error on performance degradation. A point-to-multipoint (PMP) network that employs orthogonal frequency division multiple access (OFDMA) is considered as one of the most common implementation scenarios of BWA networks. Replacing wireline networks requires not only providing the last mile connectivity to subscribers but also supporting their diverse services with stringent quality of service (QoS) requirements. Therefore, the resource allocation problem (i.e., subcarriers, rate and power allocation) is modeled as a network utility maximization (NUM) one that captures the characteristics of this implementation scenario. A dual decomposition-based resource allocation scheme that takes into consideration the diversity of service requirements and inaccuracy of the CSI estimation is developed. Numerical evaluations and simulations are conducted to validate our theoretical claims that the scheme maximizes resource utilization, coordinates with the call admission controller to guarantee QoS, and accounts for CSI inaccuracy. Cooperation has recently received great attention from the research community and industry because of its low cost and fast deployment in addition to the performance improvement it brings to BWA networks. In cooperative scenarios, subscribers cooperate to relay each other's signals. For this implementation scenario of BWA networks, a robust and constrained Kalman filter-based power allocation scheme is proposed to minimize power consumption and guarantee bit error probability (BEP) requirements. The proposed scheme is robust to CSI inaccuracy, responsive to changes in BEP requirements, and optimal in allocating resources. In summary, research results presented in this thesis contribute to the development of practical resource allocation schemes for BWA networks

    Service oriented networking for multimedia applications in broadband wireless networks

    Get PDF
    Extensive efforts have been focused on deploying broadband wireless networks. Providing mobile users with high speed network connectivity will let them run various multimedia applications on their wireless devices. In order to successfully deploy and operate broadband wireless networks, it is crucial to design efficient methods for supporting various services and applications in broadband wireless networks. Moreover, the existing access-oriented networking solutions are not able to fully address all the issues of supporting various applications with different quality of service requirements. Thus, service-oriented networking has been recently proposed and has gained much attention. This dissertation discusses the challenges and possible solutions for supporting multimedia applications in broadband wireless networks. The service requirements of different multimedia applications such as video streaming and Voice over IP (VoIP) are studied and some novel service-oriented networking solutions for supporting these applications in broadband wireless networks are proposed. The performance of these solutions is examined in WiMAX networks which are the promising technology for broadband wireless access in the near future. WiMAX networks are based on the IEEE 802.16 standards which have defined different Quality of Service (QoS) classes to support a broad range of applications with varying service requirements to mobile and stationary users. The growth of multimedia traffic that requires special quality of service from the network will impose new constraints on network designers who should wisely allocate the limited resources to users based on their required quality of service. An efficient resource management and network design depends upon gaining accurate information about the traffic profile of user applications. In this dissertation, the access level traffic profile of VoIP applications are studied first, and then a realistic distribution model for VoIP traffic is proposed. Based on this model, an algorithm to allocate resources for VoIP applications in WiMAX networks is investigated. Later, the challenges and possible solutions for transmitting MPEG video streams in wireless networks are discussed. The MPEG traffic model adopted by the WiMAX Forum is introduced and different application-oriented solutions for enhancing the performance of wireless networks with respect to MPEG video streaming applications are explained. An analytical framework to verify the performance of the proposed solutions is discoursed, and it is shown that the proposed solutions will improve the efficiency of VoIP applications and the quality of streaming applications over wireless networks. Finally, conclusions are drawn and future works are discussed
    • …
    corecore