2,452 research outputs found

    Maximizing positive opinion influence using an evidential approach

    Get PDF
    International audienceIn this paper, we propose a new data based model for influence maximization in online social networks. We use the theory of belief functions to overcome the data imperfection problem. Besides, the proposed model searches to detect influencer users that adopt a positive opinion about the product, the idea, etc, to be propagated. Moreover, we present some experiments to show the performance of our model

    A reliability-based approach for influence maximization using the evidence theory

    Get PDF
    The influence maximization is the problem of finding a set of social network users, called influencers, that can trigger a large cascade of propagation. Influencers are very beneficial to make a marketing campaign goes viral through social networks for example. In this paper, we propose an influence measure that combines many influence indicators. Besides, we consider the reliability of each influence indicator and we present a distance-based process that allows to estimate the reliability of each indicator. The proposed measure is defined under the framework of the theory of belief functions. Furthermore, the reliability-based influence measure is used with an influence maximization model to select a set of users that are able to maximize the influence in the network. Finally, we present a set of experiments on a dataset collected from Twitter. These experiments show the performance of the proposed solution in detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc

    Classification of Message Spreading in a Heterogeneous Social Network

    Get PDF
    Nowadays, social networks such as Twitter, Facebook and LinkedIn become increasingly popular. In fact, they introduced new habits, new ways of communication and they collect every day several information that have different sources. Most existing research works fo-cus on the analysis of homogeneous social networks, i.e. we have a single type of node and link in the network. However, in the real world, social networks offer several types of nodes and links. Hence, with a view to preserve as much information as possible, it is important to consider so-cial networks as heterogeneous and uncertain. The goal of our paper is to classify the social message based on its spreading in the network and the theory of belief functions. The proposed classifier interprets the spread of messages on the network, crossed paths and types of links. We tested our classifier on a real word network that we collected from Twitter, and our experiments show the performance of our belief classifier

    Sequential Extensions of Causal and Evidential Decision Theory

    Full text link
    Moving beyond the dualistic view in AI where agent and environment are separated incurs new challenges for decision making, as calculation of expected utility is no longer straightforward. The non-dualistic decision theory literature is split between causal decision theory and evidential decision theory. We extend these decision algorithms to the sequential setting where the agent alternates between taking actions and observing their consequences. We find that evidential decision theory has two natural extensions while causal decision theory only has one.Comment: ADT 201

    Why De Minimis?

    Get PDF
    De minimis cutoffs are a familiar feature of risk regulation. This includes the quantitative individual risk thresholds for fatality risks employed in many contexts by EPA, FDA, and other agencies, such as the 1-in-1 million lifetime cancer risk cutoff; extreme event cutoffs for addressing natural hazards, such as the 100 - year - flood or 475 - year - earthquake; de minimis failure probabilities for built structures; the exclusion of low - probability causal models; and other policymaking criteria. All these tests have a common structure, as I show in the Article. A de minimis test, broadly defined, tells the decisionmaker to determine whether the probability of some outcome is above a low threshold and makes this determination relevant, in some way, to her choice. De minimis cutoffs are deeply problematic, and have been generally misunderstood by scholars. First, they are warranted - if at all - by virtue of policymakers\u27 bounded rationality. If policymakers were fully rational, de minimis cutoffs would have no justification. (This is true, I suggest, across a wide range of normative theories, and for the full gamut of de minimis tests). Second, although it seems plausible that some de minimis tests are justified once bounded rationality is brought into the picture, it is not clear which those are, or even how we should go about identifying them

    Incorporating knowledge uncertainty into species distribution modelling

    Get PDF
    Monitoring progress towards global goals and biodiversity targets require reliable descriptions of species distributions over time and space. Current gaps in accessible information on species distributions urges the need for integrating all available data and knowledge sources, and intensifying cooperations to more effectively support global environmental governance. For many areas and species groups, experts can constitute a valuable source of information to fill the gaps by offering their knowledge on species-environment interactions. However, expert knowledge is always subject to uncertainty, and incorporating that into species distribution mapping poses a challenge. We propose the use of the dempster–shafer theory of evidence (DST) as a novel approach in this field to extract expert knowledge, to incorporate the associated uncertainty into the procedure, and to produce reliable species distribution maps. We applied DST to model the distribution of two species of eagle in Spain. We invited experts to fill in an online questionnaire and express their beliefs on the habitat of the species by assigning probability values for given environmental variables, along with their confidence in expressing the beliefs. We then calculated evidential functions, and combined them using Dempster’s rules of combination to map the species distribution based on the experts’ knowledge. We evaluated the performances of our proposed approach using the atlas of Spanish breeding birds as an independent test dataset, and further compared the results with the outcome of an ensemble of conventional SDMs. Purely based on expert knowledge, the DST approach yielded similar results as the data driven SDMs ensemble. Our proposed approach offers a strong and practical alternative for species distribution modelling when species occurrence data are not accessible, or reliable, or both. The particular strengths of the proposed approach are that it explicitly accounts for and aggregates knowledge uncertainty, and it capitalizes on the range of data sources usually considered by an expert
    • …
    corecore