194 research outputs found

    A Review on OFDMA and MU-MIMO MAC Protocols for upcoming IEEE Standard 802.11ax

    Get PDF
    IEEE introduced a new standard IEEE 802.11ax for the next generation WLANs.As we know,the current throughput is very low because of the current Media Access Control(MAC) in present wireless area networks.So,the concept of Orthogonal Frequency Multiple Access(OFDMA) to facilitate multi user access is introduced.The main challenges of adopting OFDMA areoverhead reduction and synchronization.To meet these challenges this paper revised an OFDMA based OMAX protocol.And due to various various bandwidth consuming applications and devices today’s WLANs have become stressed and low at throughput.To handle this problem MU MIMO is used to improve the performance of WLANs.This paper surveys uplink/downlink mutli user MAC protocols for MIMO enabled devices.It also identifies the key requirements of MAC protocol design

    Enabling Techniques Design for QoS Provision in Wireless Communications

    Get PDF
    Guaranteeing Quality of Service (QoS) has become a recognized feature in the design of wireless communications. In this thesis, the problem of QoS provision is addressed from different prospectives in several modern communication systems. In the first part of the thesis, a wireless communication system with the base station (BS) associated by multiple subscribers (SS) is considered, where different subscribers require different QoS. Using the cross-layer approach, the conventional single queue finite state Markov chain system model is extended to multiple queues\u27 scenario by combining the MAC layer queue status with the physical layer channel states, modeled by finite state Markov channel (FSMC). To provide the diverse QoS to different subscribers, a priority-based rate allocation (PRA) algorithm is proposed to allocate the physical layer transmission rate to the multiple medium access control (MAC) layer queues, where different queues are assigned with different priorities, leading to their different QoS performance and thus, the diverse QoS are guaranteed. Then, the subcarrier allocation in multi-user OFDM (MU-OFDM) systems is stuied, constrained by the MAC layer diverse QoS requirements. A two-step cross-layer dynamic subcarrier allocation algorithm is proposed where the MAC layer queue status is firstly modeled by a finite state Markov chain, using which MAC layer diverse QoS constraints are transformed to the corresponding minimum physical layer data rate of each user. Then, with the purpose of maximizing the system capacity, the physical layer OFDM subcarriers are allocated to the multiple users to satisfy their minimum data rate requirements, which is derived by the MAC layer queue status model. Finally, the problem of channel assignment in IEEE 802.11 wireless local area networks (WLAN) is investigated, oriented by users\u27 QoS requirements. The number of users in the IEEE 802.11 channels is first determined through the number of different channel impulse responses (CIR) estimated at physical layer. This information is involved thereafter in the proposed channel assignment algorithm, which aims at maximum system throughput, where we explore the partially overlapped IEEE 802.11 channels to provide additional frequency resources. Moreover, the users\u27 QoS requirements are set to trigger the channel assignment process, such that the system can constantly maintain the required QoS

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    Multiuser MAC Schemes for High-Throughput IEEE 802.11n/ac WLANs

    Get PDF
    In the last decade, the Wireless Local Area Network (WLAN) market has been experiencing an impressive growth that began with the broad acceptance of the IEEE 802.11 standard [1]. Given the widespread deployment of WLANs and the increasing requirements of multimedia applications, the need for high capacity and enhanced reliability has become imperative. Multiple-Input Multiple-Output (MIMO) technology and its single receiving antenna version, MISO (Multiple-Input Single-Output (MISO), promise a signi¿cant performance boost and have been incorporated in the emerging IEEE 802.11n standard.Peer ReviewedPostprint (published version

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200
    • …
    corecore