1,388 research outputs found

    A Double-Sided Multiunit Combinatorial Auction for Substitutes: Theory and Algorithms

    Get PDF
    Combinatorial exchanges have existed for a long time in securities markets. In these auctions buyers and sellers can place orders on combinations, or bundles of different securities. These orders are conjunctive: they are matched only if the full bundle is available. On business-to-business (B2B) exchanges, buyers have the choice to receive the same product with different attributes; for instance the same product can be produced by different sellers. A buyer indicates his preference by submitting a disjunctive order, where he specifies how much of the product he wants, and how much he values each attribute. Only the goods with the best attributes and prices will be matched. This article considers a doubled-sided multi-unit combinatorial auction for substitutes, that is, a uniform price auction where buyers and sellers place both types of orders, conjunctive and disjunctive. We prove the existence of a linear price which is both competitive and surplus-maximizing when goods are perfectly divisible, and nearly so otherwise. We describe an algorithm to clear the market, which is particularly efficient when the number of traders is large.Combinatorial auction, economic equilibrium

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Chain: A Dynamic Double Auction Framework for Matching Patient Agents

    Get PDF
    In this paper we present and evaluate a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market. A single commodity, such as a resource or a task, is bought and sold by multiple buyers and sellers that arrive and depart over time. Our algorithm, Chain, provides the first framework that allows a truthful dynamic double auction (DA) to be constructed from a truthful, single-period (i.e. static) double-auction rule. The pricing and matching method of the Chain construction is unique amongst dynamic-auction rules that adopt the same building block. We examine experimentally the allocative efficiency of Chain when instantiated on various single-period rules, including the canonical McAfee double-auction rule. For a baseline we also consider non-truthful double auctions populated with zero-intelligence plus"-style learning agents. Chain-based auctions perform well in comparison with other schemes, especially as arrival intensity falls and agent valuations become more volatile

    Approximately Efficient Double Auctions with Strong Budget Balance

    Get PDF
    Mechanism design for one-sided markets is an area of extensive research in economics and, since more than a decade, in computer science as well. Two-sided markets, on the other hand, have not received the same attention despite the numerous applications to web advertisement, stock exchange, and frequency spectrum allocation. This work studies double auctions, in which unit-demand buyers and unit-supply sellers act strategically. An ideal goal in double auction design is to maximize the social welfare of buyers and sellers with individually rational (IR), incentive compatible (IC) and strongly budget-balanced (SBB) mechanisms. The first two properties are standard. SBB requires that the payments charged to the buyers are entirely handed to the sellers. This property is crucial in all the contexts that do not allow the auctioneer retaining a share of buyers' payments or subsidizing the market. Unfortunately, this goal is known to be unachievable even for the special case of bilateral trade, where there is only one buyer and one seller. Therefore, in subsequent papers, meaningful trade-offs between these requirements have been investigated. Our main contribution is the first IR, IC and SBB mechanism that provides an O(1)-approximation to the optimal social welfare. This result holds for any number of buyers and sellers with arbitrary, independent distributions. Moreover, our result continues to hold when there is an additional matroid constraint on the sets of buyers who may get allocated an item. To prove our main result, we devise an extension of sequential posted price mechanisms to two-sided markets. In addition to this, we improve the best-known approximation bounds for the bilateral trade problem

    Price Discrimination in Many-to-Many Matching Markets

    Get PDF
    We study second-degree price discrimination in markets where the product traded by the monopolist is access to other agents. We derive necessary and sufficient conditions for the welfareand the profit-maximizing mechanisms to employ a single network or a menu of non-exclusive networks. We characterize the optimal matching schedules under a wide range of preferences, derive implications for prices, and deliver testable predictions relating the structure of the optimal pricing strategies to conditions on the distribution of match qualities. Our analysis sheds light on the distortions associated with the private provision of broadcasting, health insurance and job matching services. JEL Classification Numbers:D82matching, two-sided markets, networks, adverse selection, incentives, mechanism design

    Fee-Setting Mechanisms: On Optimal Pricing by Intermediaries and Indirect Taxation

    Get PDF
    Mechanisms according to which private intermediaries or governments charge transaction fees or indirect taxes are prevalent in practice. We consider a setup with multiple buyers and sellers and two-sided independent private information about valuations. We show that any weighted average of revenue and social welfare can be maximized through appropriately chosen transaction fees and that in increasingly thin markets such optimal fees converge to linear fees. Moreover, fees decrease with competition (or the weight on welfare) and the elasticity of supply but decrease with the elasticity of demand. Our theoretical predictions fit empirical observations in several industries with intermediaries

    Double Auctions in Markets for Multiple Kinds of Goods

    Full text link
    Motivated by applications such as stock exchanges and spectrum auctions, there is a growing interest in mechanisms for arranging trade in two-sided markets. Existing mechanisms are either not truthful, or do not guarantee an asymptotically-optimal gain-from-trade, or rely on a prior on the traders' valuations, or operate in limited settings such as a single kind of good. We extend the random market-halving technique used in earlier works to markets with multiple kinds of goods, where traders have gross-substitute valuations. We present MIDA: a Multi Item-kind Double-Auction mechanism. It is prior-free, truthful, strongly-budget-balanced, and guarantees near-optimal gain from trade when market sizes of all goods grow to \infty at a similar rate.Comment: Full version of IJCAI-18 paper, with 2 figures. Previous names: "MIDA: A Multi Item-type Double-Auction Mechanism", "A Random-Sampling Double-Auction Mechanism". 10 page
    corecore