4,091 research outputs found

    Lifetime Maximization of Wireless Sensor Networks with a Mobile Source Node

    Full text link
    We study the problem of routing in sensor networks where the goal is to maximize the network's lifetime. Previous work has considered this problem for fixed-topology networks. Here, we add mobility to the source node, which requires a new definition of the network lifetime. In particular, we redefine lifetime to be the time until the source node depletes its energy. When the mobile node's trajectory is unknown in advance, we formulate three versions of an optimal control problem aiming at this lifetime maximization. We show that in all cases, the solution can be reduced to a sequence of Non- Linear Programming (NLP) problems solved on line as the source node trajectory evolves.Comment: A shorter version of this work will be published in Proceedings of 2016 IEEE Conference on Decision and Contro

    Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0

    Full text link
    Within the context of Industry 4.0, mobile robot systems such as automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) are one of the major areas challenging current communication and localization technologies. Due to stringent requirements on latency and reliability, several of the existing solutions are not capable of meeting the performance required by industrial automation applications. Additionally, the disparity in types and applications of unmanned vehicle (UV) calls for more flexible communication technologies in order to address their specific requirements. In this paper, we propose several use cases for UVs within the context of Industry 4.0 and consider their respective requirements. We also identify wireless technologies that support the deployment of UVs as envisioned in Industry 4.0 scenarios.Comment: 7 pages, 1 figure, 1 tabl

    Throughput Optimal Flow Allocation on Multiple Paths for Random Access Wireless Multi-hop Networks

    Full text link
    In this paper we consider random access wireless multi-hop mesh networks with multi-packet reception capabilities where multiple flows are forwarded to the gateways through node disjoint paths. We address the issue of aggregate throughput-optimal flow rate allocation with bounded delay guarantees. We propose a distributed flow rate allocation scheme that formulates flow rate allocation as an optimization problem and derive the conditions for non-convexity for an illustrative topology. We also employ a simple model for the average aggregate throughput achieved by all flows that captures both intra- and inter-path interference. The proposed scheme is evaluated through NS-2 simulations. Our preliminary results are derived from a grid topology and show that the proposed flow allocation scheme slightly underestimates the average aggregate throughput observed in two simulated scenarios with two and three flows respectively. Moreover it achieves significantly higher average aggregate throughput than single path utilization in two different traffic scenarios examined.Comment: Accepted for publication at the 9th IEEE BROADBAND WIRELESS ACCESS WORKSHOP (BWA2013), IEEE Globecom 2013 Workshop
    • …
    corecore