976 research outputs found

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1−o(1))n2/2n^{(1-o(1))n^2/2}

    Community detection for correlation matrices

    Get PDF
    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that tends to be intrinsically biased due to its inconsistency with the null hypotheses underlying the existing algorithms. Here we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anti-correlated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested sub-communities with `hard' cores and `soft' peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy, detect `soft stocks' that alternate between communities, and discuss implications for portfolio optimization and risk management.Comment: Final version, accepted for publication on PR

    Relaxations and Exact Solutions to Quantum Max Cut via the Algebraic Structure of Swap Operators

    Full text link
    The Quantum Max Cut (QMC) problem has emerged as a test-problem for designing approximation algorithms for local Hamiltonian problems. In this paper we attack this problem using the algebraic structure of QMC, in particular the relationship between the quantum max cut Hamiltonian and the representation theory of the symmetric group. The first major contribution of this paper is an extension of non-commutative Sum of Squares (ncSoS) optimization techniques to give a new hierarchy of relaxations to Quantum Max Cut. The hierarchy we present is based on optimizations over polynomials in the qubit swap operators. This is contrast to the ``standard'' quantum Lasserre Hierarchy, which is based on polynomials expressed in terms of the Pauli matrices. To prove correctness of this hierarchy, we give a finite presentation of the algebra generated by the qubit swap operators. This presentation allows for the use of computer algebraic techniques to manipulate simplify polynomials written in terms of the swap operators, and may be of independent interest. Surprisingly, we find that level-2 of this new hierarchy is exact (up to tolerance 10−710^{-7}) on all QMC instances with uniform edge weights on graphs with at most 8 vertices. The second major contribution of this paper is a polynomial-time algorithm that exactly computes the maximum eigenvalue of the QMC Hamiltonian for certain graphs, including graphs that can be ``decomposed'' as a signed combination of cliques. A special case of the latter are complete bipartite graphs with uniform edge-weights, for which exact solutions are known from the work of Lieb and Mattis. Our methods, which use representation theory of the symmetric group, can be seen as a generalization of the Lieb-Mattis result.Comment: 75 pages, 6 figure

    Information Theory in Molecular Evolution: From Models to Structures and Dynamics

    Get PDF
    This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues

    Random multi-index matching problems

    Full text link
    The multi-index matching problem (MIMP) generalizes the well known matching problem by going from pairs to d-uplets. We use the cavity method from statistical physics to analyze its properties when the costs of the d-uplets are random. At low temperatures we find for d>2 a frozen glassy phase with vanishing entropy. We also investigate some properties of small samples by enumerating the lowest cost matchings to compare with our theoretical predictions.Comment: 22 pages, 16 figure

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF

    Reconstruction on trees and spin glass transition

    Full text link
    Consider an information source generating a symbol at the root of a tree network whose links correspond to noisy communication channels, and broadcasting it through the network. We study the problem of reconstructing the transmitted symbol from the information received at the leaves. In the large system limit, reconstruction is possible when the channel noise is smaller than a threshold. We show that this threshold coincides with the dynamical (replica symmetry breaking) glass transition for an associated statistical physics problem. Motivated by this correspondence, we derive a variational principle which implies new rigorous bounds on the reconstruction threshold. Finally, we apply a standard numerical procedure used in statistical physics, to predict the reconstruction thresholds in various channels. In particular, we prove a bound on the reconstruction problem for the antiferromagnetic ``Potts'' channels, which implies, in the noiseless limit, new results on random proper colorings of infinite regular trees. This relation to the reconstruction problem also offers interesting perspective for putting on a clean mathematical basis the theory of glasses on random graphs.Comment: 34 pages, 16 eps figure

    Statistical physics methods in computational biology

    Get PDF
    The interest of statistical physics for combinatorial optimization is not new, it suffices to think of a famous tool as simulated annealing. Recently, it has also resorted to statistical inference to address some "hard" optimization problems, developing a new class of message passing algorithms. Three applications to computational biology are presented in this thesis, namely: 1) Boolean networks, a model for gene regulatory networks; 2) haplotype inference, to study the genetic information present in a population; 3) clustering, a general machine learning tool
    • …
    corecore