114 research outputs found

    Maximizing Crosstalk-Induced Slowdown During Path Delay Test

    Get PDF
    Capacitive crosstalk between adjacent signal wires in integrated circuits may lead to noise or a speedup or slowdown in signal transitions. These in turn may lead to circuit failure or reduced operating speed. This thesis focuses on generating test patterns to induce crosstalk-induced signal delays, in order to determine whether the circuit can still meet its timing specification. A timing-driven test generator is developed to sensitize multiple aligned aggressors coupled to a delay-sensitive victim path to detect the combination of a delay spot defect and crosstalk-induced slowdown. The framework uses parasitic capacitance information, timing windows and crosstalk-induced delay estimates to screen out unaligned or ineffective aggressors coupled to a victim path, speeding up crosstalk pattern generation. In order to induce maximum crosstalk slowdown along a path, aggressors are prioritized based on their potential delay increase and timing alignment. The test generation engine introduces the concept of alignment-driven path sensitization to generate paths from inputs to coupled aggressor nets that meet timing alignment and direction requirements. By using path delay information obtained from circuit preprocessing, preferred paths can be chosen during aggressor path propagation processes. As the test generator sensitizes aggressors in the presence of victim path necessary assignments, the search space is effectively reduced for aggressor path generation. This helps in reducing the test generation time for aligned aggressors. In addition, two new crosstalk-driven dynamic test compaction algorithms are developed to control the increase in test pattern count. The proposed test generation algorithm is applied to ISCAS85 and ISCAS89 benchmark circuits. SPICE simulation results demonstrate the ability of the alignment-driven test generator to increase crosstalk-induced delays along victim paths

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Next-Gen Hybrid Memory and Interconnect System Architectures

    Get PDF
    This dissertation mainly addresses two problems that emerge along with the 'big data' trend: the increasing demands of memory capacity for mobile computing platform, and the needs for interconnection network with higher bandwidth/energy efficiency in the HPC/Data Center. The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, consumes energy and deteriorates the write endurance of typical flash storage devices. Alternately, a larger DRAM has higher leakage power and drains the battery faster. Further, DRAM scaling trends make further growth of DRAM in the mobile space prohibitive due to cost. Emerging non-volatile memory (NVM) has the potential to alleviate these issues due to its higher capacity per cost than DRAM and minimal static power. Recently, a wide spectrum of NVM technologies, including phase-change memories (PCM), memristor, and 3D XPoint have emerged. Despite the mentioned advantages, NVM has longer access latency compared to DRAM and NVM writes can incur higher latencies and wear costs. Therefore integration of these new memory technologies in the memory hierarchy requires a fundamental rearchitecting of traditional system designs. In this work, we propose a hardware-accelerated memory manager (HMMU) that addresses both types of memory in a flat space address space. We design a set of data placement and data migration policies within this memory manager, such that we may exploit the advantages of each memory technology. By augmenting the system with this HMMU, we reduce the overall memory latency while also reducing energy consumption and writes to the NVM. Experimental results show that our design achieves a 39% reduction in energy consumption with only a 12% performance degradation versus an all-DRAM baseline that is likely untenable in the future. After developing the pure hardware memory management for the data migration between DRAM and NVM, we consider to integrate information from the software stack into our system. These software information, such as programmers' hints or application profiling results, reveals the longer-term memory access pattern and data object properties; but they come at the cost of high software latency. Hardware approaches can avoid the latencies of software kernel processes related to page migration, such as page fault handling. However, hardware's vision is limited to a short time window, as it can only monitor and analyze the recently received memory requests. Ideally, the execution time advantages of pure hardware approaches, should be combined with the data object properties in a global scope. Further, application programmer's hints could guide the data placement at the allocation time, thus data objects with similar property could be congregated to reduce unnecessary page migrations. In this work, we propose such a hardware-software cooperative approach. In particular, we built a heap memory manager that allows the programmer to choose the memory type for each data object allocation. Such denotations are relayed to the hardware memory manager as hints for the decisions on data placement and migration. Meanwhile the hardware memory manager is still capable of capturing the per-application phase changes and maintaining flexibility in its data redistribution. The integration of the two mechanisms leads to optimal results from both long-term and short-term aspects. Experiment results show that our design shortens the overall memory latency while also reducing energy consumption and writes to the NVM versus prior approaches. Our design achieves a 40% reduction in energy consumption with only a 16% performance degradation versus the all-DRAM memory system. As for the HPC/Data domain, a primary problem is how to scale up the interconnection network to service the ever-increasing number of nodes. Photonic-links, with its high bandwidth and low signal loss across long distance propagation, is a promising technology to solve this problem. The higher bandwidth allows the router to connect more nodes while the long-distance connection makes it possible to implement more advanced typologies, such as the flattened butterfly. Both factors help to reduce the average number of hops between nodes across the network. Such high-radix and short distance network is essential to provisioning low latency communications in massive scale systems. However, due to the different physical and device properties, interconnection network needs redesign to adopt the photonic links. We first listed the basic formulas and design flow for interconnection network, and introduced a highly efficient event-driven simulator. Then we conducted a series of experiments to explore the design space, and gave a quantitative comparison between interconnection networks made of pure electrical links and those with electronic/photonic hybrid design

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    • …
    corecore