7 research outputs found

    LiFi Transceiver Designs for 6G Wireless Networks

    Get PDF
    Due to the dramatic increase in high data rate services, and in order to meet the demands of the sixth-generation (6G) wireless networks, researchers from both academia and industry have been exploring advanced transmission techniques, new network archi- tectures and new frequency bands, such as the millimeter wave (mmWave), the infrared, and the visible light bands. Light-fdelity (LiFi) particularly is an emerging, novel, bidirectional, high-speed and fully networked optical wireless communication (OWC) technology that has been introduced as a promising solution for 6G networks, especially for indoor connectivity, owing to the large unexploited spectrum that translates to signifcantly high data rates. Although there has been a big leap in the maturity of the LiFi technology, there is still a considerable gap between the available LiFi technology and the required demands of 6G networks. Motivated by this, this dissertation aims to bridge between the current research literature of LiFi and the expected demands of 6G networks. Specifcally, the key goal of this dissertation is to fll some shortcomings in the LiFi technology, such as channel modeling, transceiver designs, channel state information (CSI) acquisition, localization, quality-of-service (QoS), and performance optimization. Our work is devoted to address and solve some of these limitations. Towards achieving this goal, this dissertation makes signifcant contributions to several areas of LiFi. First, it develops novel and measurements-based channel models for LiFi systems that are required for performance analysis and handover management. Second, it proposes a novel design for LiFi devices that is capable of alleviating the real behaviour of users and the impurities of indoor propagation environments. Third, it proposes intelligent, accurate and fast joint position and orientation techniques for LiFi devices, which improve the CSI estimation process and boost the indoor location-based and navigation-based services. Then, it proposes novel proactive optimization technique that can provide near-optimal and real-time service for indoor mobile LiFi users that are running some services with high data rates, such as extended reality, video conferencing, and real-time video monitoring. Finally, it proposes advanced multiple access techniques that are capable of cancelling the efects of interference in indoor multi-user settings. The studied problems are tackled using various tools from probability and statistic theory, system design and integration theory, optimization theory, and deep learning. The Results demonstrate the efectiveness of the proposed designs, solutions, and techniques. Nevertheless, the fndings in this dissertation highlight key guidelines for the efective design of LiFi while considering their unique propagation features

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore