5 research outputs found

    Reputation systems and secure communication in vehicular networks

    Get PDF
    A thorough review of the state of the art will reveal that most VANET applications rely on Public Key Infrastructure (PKI), which uses user certificates managed by a Certification Authority (CA) to handle security. By doing so, they constrain the ad-hoc nature of the VANET imposing a frequent connection to the CA to retrieve the Certificate Revocation List (CRL) and requiring some degree of roadside infrastructure to achieve that connection. Other solutions propose the usage of group signatures where users organize in groups and elect a group manager. The group manager will need to ensure that group members do not misbehave, i.e., do not spread false information, and if they do punish them, evict them from the group and report them to the CA; thus suffering from the same CRL retrieval problem. In this thesis we present a fourfold contribution to improve security in VANETs. First and foremost, Chains of Trust describes a reputation system where users disseminate Points of Interest (POIs) information over the network while their privacy remains protected. It uses asymmetric cryptography and users are responsible for the generation of their own pair of public and private keys. There is no central entity which stores the information users input into the system; instead, that information is kept distributed among the vehicles that make up the network. On top of that, this system requires no roadside infrastructure. Precisely, our main objective with Chains of Trust was to show that just by relying on people¿s driving habits and the sporadic nature of their encounters with other drivers a successful reputation system could be built. The second contribution of this thesis is the application simulator poiSim. Many¿s the time a new VANET application is presented and its authors back their findings using simulation results from renowned networks simulators like ns-2. The major issue with network simulators is that they were not designed with that purpose in mind and handling simulations with hundreds of nodes requires a massive processing power. As a result, authors run small simulations (between 50 and 100 nodes) with vehicles that move randomly in a squared area instead of using real maps, which rend unrealistic results. We show that by building tailored application simulators we can obtain more realistic results. The application simulator poiSim processes a realistic mobility trace produced by a Multi-agent Microscopic Traffic Simulator developed at ETH Zurich, which accurately describes the mobility patterns of 259,977 vehicles over regional maps of Switzerland for 24 hours. This simulation runs on a desktop PC and lasts approximately 120 minutes. In our third contribution we took Chains of Trust one step further in the protection of user privacy to develop Anonymous Chains of Trust. In this system users can temporarily exchange their identity with other users they trust, thus making it impossible for an attacker to know in all certainty who input a particular piece of information into the system. To the best of our knowledge, this is the first time this technique has been used in a reputation system. Finally, in our last contribution we explore a different form of communication for VANETs. The vast majority of VANET applications rely on the IEEE 802.11p/Wireless Access in Vehicular Environments (WAVE) standard or some other form of radio communication. This poses a security risk if we consider how vulnerable radio transmission is to intentional jamming and natural interferences: an attacker could easily block all radio communication in a certain area if his transmitter is powerful enough. Visual Light Communication (VLC), on the other hand, is resilient to jamming over a wide area because it relies on visible light to transmit information and ,unlike WAVE, it has no scalability problems. In this thesis we show that VLC is a secure and valuable form of communication in VANETs

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs

    ESPR: Efficient Security Scheme for Position-Based Routing in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular Ad hoc Network (VANET) is a promising emerging technology that enables road safety, traffic management, and passengers and drivers comfort applications. Many applications require multi-hop routing; position-based routing (PBR) is a well-recognized routing paradigm that performs well in the vehicular context to enable these applications. However, there are many security challenges and various routing attacks which may prevent the deployment of PBR protocols. In this study, we propose a novel security scheme called ESPR to secure PBR protocols in VANETs. ESPR considers both digital signature and keyed Hash Message Authentication Code (HMAC) to meet the unique requirements of PBR. In ESPR, all legitimate members share a secret key. ESPR scheme applies a novel probabilistic key distribution to allow unrevoked members to update the shared secret key. Furthermore, it defines a set of plausibility checks that enables network members to detect and avoid PBR attacks autonomously. By conducting security analysis and performance evaluation, ESPR scheme demonstrated to outperform its counterparts in terms of communication overhead and delay while achieving robust and secure operation

    Maximizing Anonymity of a Vehicle through Pseudonym Updation

    No full text
    corecore